Skip to main content

Tumour Biology Characterisation by Imaging in Clinic

  • Chapter
  • First Online:
  • 615 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

There have been advances in multiple imaging modalities in recent decades which allow more sophisticated and non-invasive means of characterising evolving aspects of tumour biology at all stages of their clinical course (i.e. diagnosis, staging, prognostication and therapy response). Particular applications include more accurate staging (e.g. highly sensitive and specific new PET tracers such as Ga-68 DOTATATE and PSMA, diffusion-weighted MRI), assessment of tumour aggressiveness and prognosis (with [18F]FDG PET, CT textural analysis) and tailoring therapy based on either initial assessment (biological dose painting) or interim response assessment ([18F]FDG PET). The field of theranostics takes imaging of tumour biology to the natural next step of applying information gained from imaging to choose and tailor radionuclide therapies. Some of these imaging advances have been evaluated in clinical trials or have already been incorporated into clinical practice. The major challenges of functional imaging modalities are reproducibility and standardisation of methodology and the cumbersome and time-consuming process of gathering the clinical evidence base, which can lag behind the rapid technological developments. Dynamic adaptation of radiotherapy plans informed by non-invasive imaging of multiple facets of tumour and normal tissue biology at multiple time points is now possible, and improved clinical outcomes need to be demonstrated in clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afshar-Oromieh A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41(1):11–20

    Article  CAS  PubMed  Google Scholar 

  • Al-Ameri A et al (2015) Risk of malignancy in pulmonary nodules: a validation study of four prediction models. Lung Cancer 89(1):27–30

    Article  PubMed  Google Scholar 

  • Alonzi R, Padhani AR, Allen C (2007) Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol 63(3):335–350

    Article  PubMed  Google Scholar 

  • Altenbernd J et al (2011) Dual-energy-CT of hypervascular liver lesions in patients with HCC: investigation of image quality and sensitivity. Eur Radiol 21(4):738–743

    Article  PubMed  Google Scholar 

  • Apfaltrer P et al (2012) Contrast-enhanced dual-energy CT of gastrointestinal stromal tumors: is iodine-related attenuation a potential indicator of tumor response? Invest Radiol 47(1):65–70

    Article  CAS  PubMed  Google Scholar 

  • Ball D et al (2017) Serial FDG and FLT PET/CT during curative intent chemoradiotherapy for NSCLC impacts patient management and may predict clinical outcomes. J Thorac Oncol 12(S420)

    Google Scholar 

  • Bahri H et al (2014) High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J Nucl Med 55(11):1786–1790

    Article  CAS  PubMed  Google Scholar 

  • Barajas RF Jr et al (2009) Differentiation of recurrent glioblastoma multiforme from radiation necrosis after external beam radiation therapy with dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 253(2):486–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Barajas RF et al (2009) Distinguishing recurrent intra-axial metastatic tumor from radiation necrosis following gamma knife radiosurgery using dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. AJNR Am J Neuroradiol 30(2):367–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barentsz JO et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22(4):746–757

    Article  PubMed  PubMed Central  Google Scholar 

  • Barker JL Jr et al (2004) Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 59(4):960–970

    Article  PubMed  Google Scholar 

  • Baxa J et al (2014) Dual-phase dual-energy CT in patients with lung cancer: assessment of the additional value of iodine quantification in lymph node therapy response. Eur Radiol 24(8):1981–1988

    Article  PubMed  Google Scholar 

  • Bellomi M et al (2007) CT perfusion for the monitoring of neoadjuvant chemotherapy and radiation therapy in rectal carcinoma: initial experience. Radiology 244(2):486–493

    Article  PubMed  Google Scholar 

  • Bentzen L et al (2000) Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography--a study evaluating [18F]Fluoro-2-deoxy-D-glucose. Acta Oncol 39(5):629–637

    Article  CAS  PubMed  Google Scholar 

  • Berwouts D et al (2013) Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial. Radiother Oncol 107(3):310–316

    Article  PubMed  Google Scholar 

  • Bhide SA et al (2010) Weekly volume and dosimetric changes during chemoradiotherapy with intensity-modulated radiation therapy for head and neck cancer: a prospective observational study. Int J Radiat Oncol Biol Phys 76(5):1360–1368

    Article  PubMed  Google Scholar 

  • Bisdas S et al (2009) Cerebral blood volume measurements by perfusion-weighted MR imaging in gliomas: ready for prime time in predicting short-term outcome and recurrent disease? AJNR Am J Neuroradiol 30(4):681–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisdas S et al (2010) Perfusion CT in squamous cell carcinoma of the upper aerodigestive tract: long-term predictive value of baseline perfusion CT measurements. AJNR Am J Neuroradiol 31(3):576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisdas S et al (2011) Distinguishing recurrent high-grade gliomas from radiation injury: a pilot study using dynamic contrast-enhanced MR imaging. Acad Radiol 18(5):575–583

    Article  PubMed  Google Scholar 

  • Blackledge MD et al (2014) Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusion-weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One 9(4):e91779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bluthgen MV, Besse B (2015) Second-line combination therapies in nonsmall cell lung cancer without known driver mutations. Eur Respir Rev 24(138):582–593

    Article  PubMed  Google Scholar 

  • Bolan PJ et al (2017) MR spectroscopy of breast cancer for assessing early treatment response: results from the ACRIN 6657 MRS trial. J Magn Reson Imaging 46(1):290–302

    Article  PubMed  Google Scholar 

  • Bradley JD et al (2002) Gross tumor volume, critical prognostic factor in patients treated with three-dimensional conformal radiation therapy for non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 52(1):49–57

    Article  PubMed  Google Scholar 

  • Buck AK et al (2002) 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62(12):3331–3334

    CAS  PubMed  Google Scholar 

  • Buck AK et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44(9):1426–1431

    CAS  PubMed  Google Scholar 

  • Caramella C et al (2015) Prognostic value of texture analysis and correlation with molecular profile in EGFR mutated/ALK rearranged advanced non-small cell lung cancer (NSCLC). Eur J Cancer 51(Suppl 3):2

    Google Scholar 

  • Castadot P et al (2010) Assessment by a deformable registration method of the volumetric and positional changes of target volumes and organs at risk in pharyngo-laryngeal tumors treated with concomitant chemo-radiation. Radiother Oncol 95(2):209–217

    Article  PubMed  Google Scholar 

  • Cha S et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echo-planar perfusion MR imaging. Radiology 223(1):11–29

    Article  PubMed  Google Scholar 

  • Chae EJ et al (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249(2):671–681

    Article  PubMed  Google Scholar 

  • Chalkidou A, O'Doherty MJ, Marsden PK (2015) False discovery rates in PET and CT studies with texture features: a systematic review. PLoS One 10(5):e0124165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheson BD et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32(27):3059–3068

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheson BD et al (2016) Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood 128(21):2489–2496

    Article  CAS  PubMed  Google Scholar 

  • Ciernik IF et al (2003) Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 57(3):853–863

    Article  PubMed  Google Scholar 

  • Clark PM et al (2017) Harnessing preclinical molecular imaging to inform advances in personalized cancer medicine. J Nucl Med 58(5):689–696

    Article  CAS  PubMed  Google Scholar 

  • Cuccurullo V, Di Stasio GD, Mansi L (2017) Radioguided surgery with radiolabeled somatostatin analogs: not only in GEP-NETs. Nucl Med Rev Cent East Eur 20(1):49–56

    Article  PubMed  Google Scholar 

  • Curran W Jr, Scott C, Langer C, et al (2003) Long-term benefit is observed in a phase III comparison of sequential vs concurrent chemoradiation for patients with unresected stage III nsclc: RTOG 9410 [Abstract]

    Google Scholar 

  • Curran W et al (2000) Phase III comparison of sequential vs concurrent chemoradiation for patients with unresected stage III non-small cell lung cancer: initial report of Radiation Therapy Oncology Group 9410 (Abstr.). Proc Am Soc Clin Oncol 19:484a

    Google Scholar 

  • Daisne JF et al (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233(1):93–100

    Article  PubMed  Google Scholar 

  • Danchaivijitr N et al (2008) Low-grade gliomas: do changes in rCBV measurements at longitudinal perfusion-weighted MR imaging predict malignant transformation? Radiology 247(1):170–178

    Article  PubMed  Google Scholar 

  • De Ruysscher D et al (2005) Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. Radiother Oncol 77(1):5–10

    Article  PubMed  Google Scholar 

  • Dubois LJ et al (2011) Preclinical evaluation and validation of [18F]HX4, a promising hypoxia marker for PET imaging. Proc Natl Acad Sci U S A 108(35):14620–14625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duprez F et al (2011) Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys 80(4):1045–1055

    Article  PubMed  Google Scholar 

  • Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17(6):1471–1474

    Article  PubMed  Google Scholar 

  • Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  • El-Haddad G (2016) PET-based percutaneous needle biopsy. PET Clin 11(3):333–349

    Article  PubMed  Google Scholar 

  • van Elmpt W et al (2012) The PET-boost randomised phase II dose-escalation trial in non-small cell lung cancer. Radiother Oncol 104(1):67–71

    Article  PubMed  Google Scholar 

  • Eschmann SM et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46(2):253–260

    PubMed  Google Scholar 

  • Essig M et al (2004) Perfusion MRI in CNS disease: current concepts. Neuroradiology 46(Suppl 2):s201–s207

    Article  PubMed  Google Scholar 

  • Even AJ et al (2015) PET-based dose painting in non-small cell lung cancer: comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes. Radiother Oncol 116(2):281–286

    Article  PubMed  Google Scholar 

  • Everitt S et al (2009) Imaging cellular proliferation during chemo-radiotherapy: a pilot study of serial 18F-FLT positron emission tomography/computed tomography imaging for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 75(4):1098–1104

    Article  PubMed  Google Scholar 

  • Everitt SJ et al (2014) Differential (18)F-FDG and (18)F-FLT uptake on serial PET/CT imaging before and during definitive chemoradiation for non-small cell lung cancer. J Nucl Med 55(7):1069–1074

    Article  CAS  PubMed  Google Scholar 

  • Falchi L et al (2014) Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia. Blood 123(18):2783–2790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faries MB et al (2017) Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med 376(23):2211–2222

    Article  PubMed  PubMed Central  Google Scholar 

  • Fay M et al (2005) Dose-volume histogram analysis as predictor of radiation pneumonitis in primary lung cancer patients treated with radiotherapy. Int J Radiat Oncol Biol Phys 61(5):1355–1363

    Article  PubMed  Google Scholar 

  • Feng M et al (2009) Using fluorodeoxyglucose positron emission tomography to assess tumor volume during radiotherapy for non-small-cell lung cancer and its potential impact on adaptive dose escalation and normal tissue sparing. Int J Radiat Oncol Biol Phys 73(4):1228–1234

    Article  PubMed  PubMed Central  Google Scholar 

  • Finkle JH et al (2017) Risk-stratifying capacity of PET/CT metabolic tumor volume in stage IIIA non-small cell lung cancer. Eur J Nucl Med Mol Imaging 44(8):1275–1284

    Article  PubMed  PubMed Central  Google Scholar 

  • Fournier LS et al (2010) Metastatic renal carcinoma: evaluation of antiangiogenic therapy with dynamic contrast-enhanced CT. Radiology 256(2):511–518

    Article  PubMed  Google Scholar 

  • Fried DV et al (2014) Prognostic value and reproducibility of pretreatment CT texture features in stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 90(4):834–842

    Article  PubMed  PubMed Central  Google Scholar 

  • Furuse K et al (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. J Clin Oncol 17(9):2692–2699

    Article  CAS  PubMed  Google Scholar 

  • Galldiks N et al (2012) Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53(9):1367–1374

    Article  CAS  PubMed  Google Scholar 

  • Ganeshan B et al (2012a) Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 22(4):796–802

    Article  PubMed  Google Scholar 

  • Ganeshan B et al (2012b) Tumour heterogeneity in oesophageal cancer assessed by CT texture analysis: preliminary evidence of an association with tumour metabolism, stage, and survival. Clin Radiol 67(2):157–164

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Figueiras R et al (2013) CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol 200(1):8–19

    Article  PubMed  Google Scholar 

  • Gebhart G et al (2016) Imaging diagnostic and therapeutic targets: human epidermal growth factor receptor 2. J Nucl Med 57(Suppl 1):81s–88s

    Article  CAS  PubMed  Google Scholar 

  • Geets X et al (2007) Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 85(1):105–115

    Article  PubMed  Google Scholar 

  • Geets X, Gregoire V, Lee JA (2013) Implementation of hypoxia PET imaging in radiation therapy planning. Q J Nucl Med Mol Imaging 57(3):271–282

    CAS  PubMed  Google Scholar 

  • Geurts N et al (2017) Prostate-specific membrane antigen radioguided surgery: a promising utility. BJU Int 120(1):5–6

    Article  PubMed  Google Scholar 

  • Giles SL et al (2014) Whole-body diffusion-weighted MR imaging for assessment of treatment response in myeloma. Radiology 271(3):785–794

    Article  PubMed  Google Scholar 

  • Haider MA et al (2017) CT texture analysis: a potential tool for prediction of survival in patients with metastatic clear cell carcinoma treated with sunitinib. Cancer Imaging 17(1):4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56(1):83–88

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  • Hatt M et al (2017) Characterization of PET/CT images using texture analysis: the past, the present... any future? Eur J Nucl Med Mol Imaging 44(1):151–165

    Article  PubMed  Google Scholar 

  • Hayano K et al (2007) Perfusion CT can predict the response to chemoradiation therapy and survival in esophageal squamous cell carcinoma: initial clinical results. Oncol Rep 18(4):901–908

    PubMed  Google Scholar 

  • Henriques de Figueiredo B et al (2009) Comparison between CT- and FDG-PET-defined target volumes for radiotherapy planning in head-and-neck cancers. Radiother Oncol 93(3):479–482

    Article  PubMed  Google Scholar 

  • Hentschel M et al (2009) Serial FDG-PET on patients with head and neck cancer: implications for radiation therapy. Int J Radiat Biol 85(9):796–804

    Article  CAS  PubMed  Google Scholar 

  • Hermans R et al (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57(5):1351–1356

    Article  PubMed  Google Scholar 

  • Heron DE et al (2004) Hybrid PET-CT simulation for radiation treatment planning in head-and-neck cancers: a brief technical report. Int J Radiat Oncol Biol Phys 60(5):1419–1424

    Article  PubMed  Google Scholar 

  • Hertz S, Roberts A (1946a) Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc 131:81–86

    Article  CAS  PubMed  Google Scholar 

  • Hertz S, Roberts A (1946b) Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in Graves’ disease. West J Surg Obstet Gynecol 54(12):474–486

    CAS  PubMed  Google Scholar 

  • Heukelom J et al (2013) Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); a randomized controlled phase II trial for individualized treatment of head and neck cancer. BMC Cancer 13:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hicks RJ (2017) Learning from failure; hypoxia is an evil foe. J Nucl Med 58(7):1043–1044

    Article  CAS  PubMed  Google Scholar 

  • Hicks RJ, Hofman MS (2012) Is there still a role for SPECT-CT in oncology in the PET-CT era? Nat Rev Clin Oncol 9(12):712–720

    Article  CAS  PubMed  Google Scholar 

  • Ho AL et al (2013) Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 368(7):623–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockel M et al (1993) Tumor oxygenation: a new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol 51(2):141–149

    Article  CAS  PubMed  Google Scholar 

  • Hoeben BA et al (2013) 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med 54(4):532–540

    Article  CAS  PubMed  Google Scholar 

  • Hofman MS, Hicks RJ (2012) Changing paradigms with molecular imaging of neuroendocrine tumors. Discov Med 14(74):71–81

    PubMed  Google Scholar 

  • Hope TA et al (2017) 68Ga-PSMA-11 PET imaging of response to androgen receptor inhibition: first human experience. J Nucl Med 58(1):81–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horger M et al (2011) Whole-body diffusion-weighted MRI with apparent diffusion coefficient mapping for early response monitoring in multiple myeloma: preliminary results. AJR Am J Roentgenol 196(6):W790–W795

    Article  PubMed  Google Scholar 

  • Hu LS et al (2009) Relative cerebral blood volume values to differentiate high-grade glioma recurrence from posttreatment radiation effect: direct correlation between image-guided tissue histopathology and localized dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging measurements. AJNR Am J Neuroradiol 30(3):552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ippolito D et al (2010) Hepatocellular carcinoma treated with transarterial chemoembolization: dynamic perfusion-CT in the assessment of residual tumor. World J Gastroenterol 16(47):5993–6000

    PubMed  PubMed Central  Google Scholar 

  • Ippolito D et al (2013) Viable residual tumor tissue after radiofrequency ablation treatment in hepatocellular carcinoma: evaluation with CT perfusion. Abdom Imaging 38(3):502–510

    Article  PubMed  Google Scholar 

  • Johnson P et al (2016) Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med 374(25):2419–2429

    Article  PubMed  PubMed Central  Google Scholar 

  • Joo Hyun O, Lodge MA, Wahl RL (2016) Practical PERCIST: a simplified guide to PET response criteria in solid tumors 1.0. Radiology 280(2):576–584

    Article  Google Scholar 

  • Jung SH et al (2012) Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: diffusion-weighted 3 Tesla MR imaging. J Magn Reson Imaging 35(1):110–116

    Article  PubMed  Google Scholar 

  • Juweid ME et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25(5):571–578

    Article  PubMed  Google Scholar 

  • Kelly PJ et al (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66(6):865–874

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Tannock IF (2005) Repopulation of cancer cells during therapy: an important cause of treatment failure. Nat Rev Cancer 5(7):516–525

    Article  CAS  PubMed  Google Scholar 

  • Kim YK et al (2012a) Diagnostic accuracy and sensitivity of diffusion-weighted and of gadoxetic acid-enhanced 3-T MR imaging alone or in combination in the detection of small liver metastasis (</=1.5 cm in diameter). Invest Radiol 47(3):159–166

    Article  CAS  PubMed  Google Scholar 

  • Kim YN et al (2012b) Dual-energy CT in patients treated with anti-angiogenic agents for non-small cell lung cancer: new method of monitoring tumor response? Korean J Radiol 13(6):702–710

    Article  PubMed  PubMed Central  Google Scholar 

  • Klauss M et al (2013) Dual-energy perfusion-CT of pancreatic adenocarcinoma. Eur J Radiol 82(2):208–214

    Article  CAS  PubMed  Google Scholar 

  • Knopp EA et al (1999) Glial neoplasms: dynamic contrast-enhanced T2∗-weighted MR imaging. Radiology 211(3):791–798

    Article  CAS  PubMed  Google Scholar 

  • Koh WJ et al (1992) Imaging of hypoxia in human tumors with [F-18]fluoromisonidazole. Int J Radiat Oncol Biol Phys 22(1):199–212

    Article  CAS  PubMed  Google Scholar 

  • Koh DM et al (2012) Combining diffusion-weighted MRI with Gd-EOB-DTPA-enhanced MRI improves the detection of colorectal liver metastases. Br J Radiol 85(1015):980–989

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh TS et al (2013) Primary colorectal cancer: use of kinetic modeling of dynamic contrast-enhanced CT data to predict clinical outcome. Radiology 267(1):145–154

    Article  PubMed  Google Scholar 

  • Kong FM et al (2005) High-dose radiation improved local tumor control and overall survival in patients with inoperable/unresectable non-small-cell lung cancer: long-term results of a radiation dose escalation study. Int J Radiat Oncol Biol Phys 63(2):324–333

    Article  PubMed  Google Scholar 

  • Krenning EP et al (1992) Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J Nucl Med 33(5):652–658

    CAS  PubMed  Google Scholar 

  • Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S

    Article  CAS  PubMed  Google Scholar 

  • Kyle SD, Law WP, Miles KA (2013) Predicting tumour response. Cancer Imaging 13(3):381–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Lapa C et al (2014) Comparison of the amino acid tracers 18F-FET and 18F-DOPA in high-grade glioma patients. J Nucl Med 55(10):1611–1616

    Article  CAS  PubMed  Google Scholar 

  • Lapi SE, Voller TF, Welch MJ (2009) Positron emission tomography imaging of hypoxia. PET Clin 4(1):39–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Lardinois D et al (2003) Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med 348(25):2500–2507

    Article  PubMed  Google Scholar 

  • Law WP, Miles KA (2013) Incorporating prognostic imaging biomarkers into clinical practice. Cancer Imaging 13(3):332–341

    Article  PubMed Central  Google Scholar 

  • Law M et al (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247(2):490–498

    Article  PubMed  Google Scholar 

  • Le Chevalier T et al (1994) Radiotherapy alone versus combined chemotherapy and radiotherapy in unresectable non-small cell lung carcinoma. Lung Cancer 10(Suppl 1):S239–S244

    Article  PubMed  Google Scholar 

  • Le Moigne F et al (2012) Impact of diffusion-weighted MR imaging on the characterization of small hepatocellular carcinoma in the cirrhotic liver. Magn Reson Imaging 30(5):656–665

    Article  PubMed  Google Scholar 

  • Lebech AM et al (2017) Whole-body 18F-FDG PET/CT is superior to CT as first-line diagnostic imaging in patients referred with serious nonspecific symptoms or signs of cancer: a randomized prospective study of 200 patients. J Nucl Med 58(7):1058–1064

    Article  CAS  PubMed  Google Scholar 

  • LeBleu VS (2015) Imaging the tumor microenvironment. Cancer J 21(3):174–178

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee NY et al (2008) Fluorine-18-labeled fluoromisonidazole positron emission and computed tomography-guided intensity-modulated radiotherapy for head and neck cancer: a feasibility study. Int J Radiat Oncol Biol Phys 70(1):2–13

    Article  CAS  PubMed  Google Scholar 

  • Lee E et al (2017) Functional lung avoidance and response-adaptive escalation (FLARE) RT: multimodality plan dosimetry of a precision radiation oncology strategy. Med Phys 44(7):3418–3429

    Article  CAS  PubMed  Google Scholar 

  • Liao GJ et al (2016) 18F-Fluoroestradiol PET: current status and potential future clinical applications. J Nucl Med 57(8):1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Lin C et al (2011) Whole-body diffusion-weighted imaging with apparent diffusion coefficient mapping for treatment response assessment in patients with diffuse large B-cell lymphoma: pilot study. Invest Radiol 46(5):341–349

    Article  PubMed  Google Scholar 

  • Lind JS et al (2010) Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non-small cell lung cancer: a new method of monitoring treatment? Eur Radiol 20(12):2890–2898

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2007) Accuracy of computed tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients with breast cancer. Breast Cancer Res 9(4):R40

    Article  PubMed  PubMed Central  Google Scholar 

  • van Loon J et al (2010) PET imaging of hypoxia using [18F]HX4: a phase I trial. Eur J Nucl Med Mol Imaging 37(9):1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Lordick F et al (2007) PET to assess early metabolic response and to guide treatment of adenocarcinoma of the oesophagogastric junction: the MUNICON phase II trial. Lancet Oncol 8(9):797–805

    Article  PubMed  Google Scholar 

  • Macura KJ et al (2006) Patterns of enhancement on breast MR images: interpretation and imaging pitfalls. Radiographics 26(6):1719–1734; quiz 1719

    Article  PubMed  Google Scholar 

  • Madani I et al (2011) Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer. Radiother Oncol 101(3):351–355

    Article  PubMed  Google Scholar 

  • Mariani G et al (2003) Preoperative localization and radioguided parathyroid surgery. J Nucl Med 44(9):1443–1458

    PubMed  Google Scholar 

  • Martel MK et al (1999) Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer 24(1):31–37

    Article  CAS  PubMed  Google Scholar 

  • Martins EB et al (2015) Diffusion-weighted MRI in the assessment of early treatment response in patients with squamous-cell carcinoma of the head and neck: comparison with morphological and PET/CT findings. PLoS One 10(11):e0140009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathias CJ, Green MA (2008) A convenient route to [68Ga]Ga-MAA for use as a particulate PET perfusion tracer. Appl Radiat Isot 66(12):1910–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurer T et al (2017) PSMA-PET for lymph node detection in recurrent prostate cancer: how do we use the magic bullet? Theranostics 7(7):2046–2047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer AT et al (2017) Practical immuno-PET radiotracer design considerations for human immune checkpoint imaging. J Nucl Med 58(4):538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayerhoefer ME et al (2015) Evaluation of diffusion-weighted magnetic resonance imaging for follow-up and treatment response assessment of lymphoma: results of an 18F-FDG-PET/CT-controlled prospective study in 64 patients. Clin Cancer Res 21(11):2506–2513

    Article  CAS  PubMed  Google Scholar 

  • Mehanna H et al (2017) PET-NECK: a multicentre randomised Phase III non-inferiority trial comparing a positron emission tomography-computerised tomography-guided watch-and-wait policy with planned neck dissection in the management of locally advanced (N2/N3) nodal metastases in patients with squamous cell head and neck cancer. Health Technol Assess 21(17):1–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Meignan M et al (2016) Baseline metabolic tumor volume predicts outcome in high-tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J Clin Oncol 34(30):3618–3626

    Article  PubMed  Google Scholar 

  • Meredith G et al (2016) The use of 68 Ga-PSMA PET CT in men with biochemical recurrence after definitive treatment of acinar prostate cancer. BJU Int 118(Suppl 3):49–55

    Article  PubMed  Google Scholar 

  • Meyer M et al (2013) CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. Eur J Radiol 82(6):923–928

    Article  CAS  PubMed  Google Scholar 

  • Moon M, Cornfeld D, Weinreb J (2009) Dynamic contrast-enhanced breast MR imaging. Magn Reson Imaging Clin N Am 17(2):351–362

    Article  PubMed  Google Scholar 

  • Mortensen LS et al (2010) Identifying hypoxia in human tumors: a correlation study between 18F-FMISO PET and the Eppendorf oxygen-sensitive electrode. Acta Oncol 49(7):934–940

    Article  CAS  PubMed  Google Scholar 

  • Muzi M et al (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46(2):274–282

    CAS  PubMed  Google Scholar 

  • Ng CS et al (2011) Perfusion CT findings in patients with metastatic carcinoid tumors undergoing bevacizumab and interferon therapy. AJR Am J Roentgenol 196(3):569–576

    Article  PubMed  Google Scholar 

  • Ng F et al (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266(1):177–184

    Article  PubMed  Google Scholar 

  • Nieweg OE, Uren RF, Thompson JF (2015) The history of sentinel lymph node biopsy. Cancer J 21(1):3–6

    Article  PubMed  Google Scholar 

  • Nishioka T et al (2002) Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 53(4):1051–1057

    Article  PubMed  Google Scholar 

  • Nordsmark M et al (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24

    Article  PubMed  Google Scholar 

  • Noy A et al (2009) The majority of transformed lymphomas have high standardized uptake values (SUVs) on positron emission tomography (PET) scanning similar to diffuse large B-cell lymphoma (DLBCL). Ann Oncol 20(3):508–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22(3):265–280

    Article  CAS  PubMed  Google Scholar 

  • Ocak I et al (2007) Dynamic contrast-enhanced MRI of prostate cancer at 3T: a study of pharmacokinetic parameters. AJR Am J Roentgenol 189(4):849

    Article  PubMed  Google Scholar 

  • Ogawa M et al (2012) Dual-energy CT can evaluate both hilar and mediastinal lymph nodes and lesion vascularity with a single scan at 60 seconds after contrast medium injection. Acad Radiol 19(8):1003–1010

    Article  PubMed  Google Scholar 

  • Oh BC et al (2007) Stereotactic radiosurgery: adjacent tissue injury and response after high-dose single fraction radiation: Part I—Histology, imaging, and molecular events. Neurosurgery 60(1):31–44; discussion 44–45

    Article  PubMed  Google Scholar 

  • Ohno Y et al (2012) Diffusion-weighted MRI versus 18F-FDG PET/CT: performance as predictors of tumor treatment response and patient survival in patients with non-small cell lung cancer receiving chemoradiotherapy. AJR Am J Roentgenol 198(1):75–82

    Article  PubMed  Google Scholar 

  • Osborne JR et al (2013) Prostate-specific membrane antigen-based imaging. Urol Oncol 31(2):144–154

    Article  CAS  PubMed  Google Scholar 

  • Padhani AR et al (2014) Therapy monitoring of skeletal metastases with whole-body diffusion MRI. J Magn Reson Imaging 39(5):1049–1078

    Article  PubMed  Google Scholar 

  • Paesmans M et al (2010) Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol 5(5):612–619

    Article  PubMed  Google Scholar 

  • Pajonk F, Vlashi E, McBride WH (2010) Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 28(4):639–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan L et al (2009) Prognostic significance of SUV on PET/CT in patients with esophageal cancer: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 21(9):1008–1015

    Article  PubMed  Google Scholar 

  • Park MJ et al (2013) Validation of diagnostic criteria using gadoxetic acid-enhanced and diffusion-weighted MR imaging for small hepatocellular carcinoma (<=2.0 cm) in patients with hepatitis-induced liver cirrhosis. Acta Radiol 54(2):127–136

    Article  PubMed  Google Scholar 

  • Pattison DA, Hofman MS (2015) Role of fluorodeoxyglucose PET/computed tomography in targeted radionuclide therapy for endocrine malignancies. PET Clin 10(4):461–476

    Article  PubMed  Google Scholar 

  • Peeters SG et al (2015) A comparative study of the hypoxia PET tracers [(1)(8)F]HX4, [(1)(8)F]FAZA, and [(1)(8)F]FMISO in a preclinical tumor model. Int J Radiat Oncol Biol Phys 91(2):351–359

    Article  CAS  PubMed  Google Scholar 

  • Perez CA et al (1980) A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Preliminary report by the Radiation Therapy Oncology Group. Cancer 45(11):2744–2753

    Article  CAS  PubMed  Google Scholar 

  • PI-RADS: Prostate Imaging—reporting and Data System version 2 (2015). http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/PIRADS/PIRADSV2.pdf

  • Pryor DI et al (2013) Economic analysis of FDG-PET-guided management of the neck after primary chemoradiotherapy for node-positive head and neck squamous cell carcinoma. Head Neck 35(9):1287–1294

    Article  PubMed  Google Scholar 

  • Radford J et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607

    Article  CAS  PubMed  Google Scholar 

  • Rajendran JG et al (2003) [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 30(5):695–704

    Article  CAS  PubMed  Google Scholar 

  • Rajendran JG et al (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10(7):2245–2252

    Article  CAS  PubMed  Google Scholar 

  • Rajendran JG et al (2006) Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 12(18):5435–5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasey JS et al (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43(9):1210–1217

    CAS  PubMed  Google Scholar 

  • Rauscher I et al (2016) Value of 68Ga-PSMA HBED-CC PET for the assessment of lymph node metastases in prostate cancer patients with biochemical recurrence: comparison with histopathology after salvage lymphadenectomy. J Nucl Med 57(11):1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Rengan R et al (2004) Improved local control with higher doses of radiation in large-volume stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 60(3):741–747

    Article  PubMed  Google Scholar 

  • Rischin D et al (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24(13):2098–2104

    Article  PubMed  Google Scholar 

  • Robbins RJ et al (2006) Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 91(2):498–505

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig KE et al (2005) Results of a phase I dose-escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable nonsmall cell lung carcinoma. Cancer 103(10):2118–2127

    Article  PubMed  Google Scholar 

  • Rothenberg SM et al (2015) Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res 21(5):1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Rymer B et al (2016) FDG PET/CT can assess the response of locally advanced rectal cancer to neoadjuvant chemoradiotherapy: evidence from meta-analysis and systematic review. Clin Nucl Med 41(5):371–375

    Article  PubMed  Google Scholar 

  • Sahani DV et al (2005) Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: initial observations. Radiology 234(3):785–792

    Article  PubMed  Google Scholar 

  • Saunders M et al (1997) Continuous hyperfractionated accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small-cell lung cancer: a randomised multicentre trial. CHART Steering Committee. Lancet 350(9072):161–165

    Article  CAS  PubMed  Google Scholar 

  • Saunders M et al (1999) Continuous, hyperfractionated, accelerated radiotherapy (CHART) versus conventional radiotherapy in non-small cell lung cancer: mature data from the randomised multicentre trial. CHART Steering Committee. Radiother Oncol 52(2):137–148

    Article  CAS  PubMed  Google Scholar 

  • Sause W et al (2000) Final results of phase III trial in regionally advanced unresectable non-small cell lung cancer: Radiation Therapy Oncology Group, Eastern Cooperative Oncology Group, and Southwest Oncology Group. Chest 117(2):358–364

    Article  CAS  PubMed  Google Scholar 

  • Scarfone C et al (2004) Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 45(4):543–552

    PubMed  Google Scholar 

  • Schaake-Koning C et al (1992) Effects of concomitant cisplatin and radiotherapy on inoperable non-small-cell lung cancer. N Engl J Med 326(8):524–530

    Article  CAS  PubMed  Google Scholar 

  • Scher HI et al (2016) Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol 34(12):1402–1418

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmid-Bindert G et al (2012) Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 22(1):93–103

    Article  CAS  PubMed  Google Scholar 

  • Seymour L et al (2017) iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol 18(3):e143–e152

    Article  PubMed  PubMed Central  Google Scholar 

  • Siva S et al (2016) Ga-68 MAA perfusion 4D-PET/CT scanning allows for functional lung avoidance using conformal radiation therapy planning. Technol Cancer Res Treat 15(1):114–121

    Article  CAS  PubMed  Google Scholar 

  • Song I et al (2010) Assessment of response to radiotherapy for prostate cancer: value of diffusion-weighted MRI at 3 T. AJR Am J Roentgenol 194(6):W477–W482

    Article  PubMed  Google Scholar 

  • Sonni I, Baratto L, Iagaru A (2017) Imaging of prostate cancer using Gallium-68-labeled Bombesin. PET Clin 12(2):159–171

    Article  PubMed  Google Scholar 

  • Sridhar P et al (2014) FDG PET metabolic tumor volume segmentation and pathologic volume of primary human solid tumors. AJR Am J Roentgenol 202(5):1114–1119

    Article  PubMed  Google Scholar 

  • Strosberg J et al (2017) Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 376(2):125–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugahara T et al (1998) Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 171(6):1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Sun CH et al (2011) Quantitative assessment of perirectal tumor infiltration with dynamic contrast-enhanced multi-detector row CT in rectal cancer. Eur J Radiol 80(2):279–283

    Article  PubMed  Google Scholar 

  • Tout M et al (2017) Rituximab exposure is influenced by baseline metabolic tumor volume and predicts outcome of DLBCL patients: a Lymphoma Study Association report. Blood 129(19):2616–2623

    Article  CAS  PubMed  Google Scholar 

  • Trojanowska A et al (2012) Squamous cell cancer of hypopharynx and larynx - evaluation of metastatic nodal disease based on computed tomography perfusion studies. Eur J Radiol 81(5):1034–1039

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K et al (2015) Evaluation of staging and early response to chemotherapy with whole-body diffusion-weighted MRI in malignant lymphoma patients: a comparison with FDG-PET/CT. J Magn Reson Imaging 41(6):1601–1607

    Article  PubMed  Google Scholar 

  • Upadhyay M et al (2013) The Warburg effect: insights from the past decade. Pharmacol Ther 137(3):318–330

    Article  CAS  PubMed  Google Scholar 

  • Valdes Olmos RA et al (2014) Contribution of SPECT/CT imaging to radioguided sentinel lymph node biopsy in breast cancer, melanoma, and other solid cancers: from “open and see” to “see and open”. Q J Nucl Med Mol Imaging 58(2):127–139

    CAS  PubMed  Google Scholar 

  • Valk PE, Bailey DL, Townsend DW, Maisey MN (2004) Positron emission tomography: basic science and clinical practice. Springer, New York

    Google Scholar 

  • Vanderstraeten B, Duthoy W, De Gersem W, De Neve W, Thierens H (2006) [18F]fluoro-deoxy-glucose positron emission tomography ([18F]FDG-PET) voxel intensity-based intensity-modulated radiation therapy (IMRT) for head and neck cancer. Radiother Oncol 2006(79):249–258

    Article  CAS  Google Scholar 

  • van der Veldt AA et al (2010) Targeted therapies in renal cell cancer: recent developments in imaging. Target Oncol 5(2):95–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma S et al (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. AJR Am J Roentgenol 198(6):1277–1288

    Article  PubMed  PubMed Central  Google Scholar 

  • Vordermark D, Horsman MR (2016) Hypoxia as a biomarker and for personalized radiation oncology. Recent Results Cancer Res 198:123–142

    Article  CAS  PubMed  Google Scholar 

  • Wahl RL et al (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(Suppl 1):122s–150s

    Article  CAS  PubMed  Google Scholar 

  • Wang D et al (2012) Functional and biologic metrics for predicting radiation pneumonitis in locally advanced non-small cell lung cancer patients treated with chemoradiotherapy. Clin Transl Oncol 14(12):943–952

    Article  CAS  PubMed  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss GJ et al (2014) Noninvasive image texture analysis differentiates K-ras mutation from pan-wildtype NSCLC and is prognostic. PLoS One 9(7):e100244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westphalen AC et al (2008) Peripheral zone prostate cancer: accuracy of different interpretative approaches with MR and MR spectroscopic imaging. Radiology 246(1):177–184

    Article  PubMed  Google Scholar 

  • Win T et al (2013) Tumor heterogeneity and permeability as measured on the CT component of PET/CT predict survival in patients with non-small cell lung cancer. Clin Cancer Res 19(13):3591–3599

    Article  CAS  PubMed  Google Scholar 

  • Wong AN et al (2017) The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging 44(Suppl 1):67–77

    Article  PubMed  Google Scholar 

  • Yamamoto Y et al (2007) Correlation of 18F-FLT and 18F-FDG uptake on PET with Ki-67 immunohistochemistry in non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34(10):1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Yap CS et al (2006) Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest 129(2):393–401

    Article  PubMed  Google Scholar 

  • Zegers CM et al (2013) Hypoxia imaging with [(1)(8)F]HX4 PET in NSCLC patients: defining optimal imaging parameters. Radiother Oncol 109(1):58–64

    Article  PubMed  Google Scholar 

  • Zhao L, West BT, Hayman JA, Lyons S, Cease K, Kong FM (2007) High radiation dose may reduce the negative effect of large gross tumor volume in patients with medically inoperable early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2007(68):103–110

    Article  Google Scholar 

  • Zhu AX et al (2008) Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist 13(2):120–125

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind S. Ravi Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ravi Kumar, A.S., Law, W.P., Wilson, C., Siva, S., Hofman, M.S. (2020). Tumour Biology Characterisation by Imaging in Clinic. In: Beets-Tan, R., Oyen, W., Valentini, V. (eds) Imaging and Interventional Radiology for Radiation Oncology. Medical Radiology(). Springer, Cham. https://doi.org/10.1007/978-3-030-38261-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38261-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38260-5

  • Online ISBN: 978-3-030-38261-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics