Skip to main content

Robust Operational-Space Motion Control of a Sitting-Type Lower Limb Rehabilitation Robot

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1126))

Abstract

This paper presents a robust motion control of a sitting-type lower limb rehabilitation robot (LLRR) in its operational-space. The mathematical background of the proposed robot is discussed and its motion control design in the task-space based on a double-loop control approach is derived herein along with its closed-loop system stability analysis. The motion tracking performance analysis of the proposed scheme is demonstrated using computer based numerical simulations. For numerical simulations and to validate the effectiveness of the motion control strategy, the clinically obtained test gait data is used for the desired motion trajectory of the lower limb rehabilitation robot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Samorodskaya, I.V., Zayratyants, O.V., Perkhov, V.I., Andreev, E.M., Vaisman, D.Sh.: Trends in stroke mortality rates in Russia and the USA over a 15-year period. Arch. Pathol. 80(2), 30–37 (2018)

    Google Scholar 

  2. Early rehabilitation of patients after acute ischemic stroke. Science and healthcare, 2 (2014)

    Google Scholar 

  3. Vashisht, N., Puliyel, J.: Polio programme: let us declare victory and move on. Indian J. Med. Ethics 9(2), 114–117 (2012)

    Google Scholar 

  4. Truelsen, T., Bonita, R.: The worldwide burden of stroke: current status and future projections. In: Handbook of Clinical Neurology, 3rd edn, vol. 92, pp. 327–336 (2009)

    Google Scholar 

  5. Loeb, G.E.: Neural control of locomotion. BioSciences 39, 800–804 (1989)

    Article  Google Scholar 

  6. Stein, P.S.G., Stuart, D.G., Grillner, S., Selverston, A.I.: Neurons, Networks, and Motor Behavior. MIT Press, Cambridge (1999)

    Google Scholar 

  7. Huang, G., et al.: Design and feasibility study of a leg-exoskeleton assistive wheel-chair robot with tests on gluteus medius muscles. Sensors 19(3), 548 (2019)

    Article  Google Scholar 

  8. Cafolla, D., Russo, M., Carbone, G.: CUBE, a cable-driven device for limb rehabilitation. J. Bionic Eng. 16, 492–502 (2019)

    Article  Google Scholar 

  9. Merlet, J., et al.: Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries. Int. J. Robot. Res. 18(9), 902–916 (1999)

    Article  Google Scholar 

  10. Evtushenko, Y.: Numerical methods for finding global extreme (case of a non-uniform mesh). U.S.S.R. Comput. Maths. Math. Phys. 11, 1390–1403 (1971)

    Article  Google Scholar 

  11. Evtushenko, Y., Posypkin, M., Rybak, L., Turkin, A.: Approximating a solution set of non-linear inequalities. J. Global Optim. 7, 129–145 (2018)

    Article  Google Scholar 

  12. Evtushenko, Y., Posypkin, M., Turkin, A., Rybak, L.: The non-uniform covering approach to manipulator workspace assessment. In: Proceedings of the 2017 IEEE Russia Section Young Researchers in Electrical and Electronic Engineering Conference, El-ConRus 2017, pp. 386–389 (2017)

    Google Scholar 

  13. Rybak, L.A., Posypkin, M.A., Turkin, A.V.: Method for approximating the workspace of the parallel robot. Int. J. Pharmacy Technol. 8(4), 25045–25055 (2016)

    Google Scholar 

  14. Joumah, A.A., Albitar, C.: Design optimization of 6-RUS parallel manipulator using hybrid algorithm. Int. J. Inf. Technol. Comput. Sci. (IJITCS) 10(2), 83–95 (2018)

    Google Scholar 

  15. Mohammed, R.H., Elnaghi, B.E., Bendary, F.A., Elserfi, K.: Trajectory tracking control and robustness analysis of a robotic manipulator using advanced control techniques. Int. J. Eng. Manuf. (IJEM) 8(6), 42–54 (2018)

    Article  Google Scholar 

  16. Sahraoui, M., Khelfi, M.F., Salem, M.: Sequential adaptive fuzzy inference system based intelligent control of robot manipulators. Int. J. Intell. Syst. Appl. (IJISA) 6(11), 49–56 (2014)

    Article  Google Scholar 

  17. Colgate, J.E., Hogan, N.: Robust control of dynamically interacting systems. Int. J. Control 48(1), 65–88 (1988)

    Article  MathSciNet  Google Scholar 

  18. Stansfield, B.W., Hillman, S.J., Hazlewood, M.E., Robb, J.E.: Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait Posture 23, 288–294 (2006)

    Article  Google Scholar 

  19. Jaulin, L.: Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, New York (2001)

    Book  Google Scholar 

  20. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, the agreement number 19-19-00692.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Malyshev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohan, S., Mohanta, J.K., Behera, L., Rybak, L., Malyshev, D. (2020). Robust Operational-Space Motion Control of a Sitting-Type Lower Limb Rehabilitation Robot. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education III. AIMEE 2019. Advances in Intelligent Systems and Computing, vol 1126. Springer, Cham. https://doi.org/10.1007/978-3-030-39162-1_15

Download citation

Publish with us

Policies and ethics