Skip to main content

Abstract

Analog designers often have to compromise on some circuit performances to achieve a handmade solution, due to the large number of constraints that must be fulfilled. This fact led to the appearance of several techniques and tools for the automation of analog IC sizing by both academy and industry. Despite the evolution of those techniques and tools, a substantial part of analog sizing tasks is still dependent on human intervention. Paradoxically, experience shows that once an EDA sizing tool finds a solution, a designer is able to improve that solution by adjusting one or a very small number of design parameters, and the paradox is that the designer was unable to achieve that original EDA optimal solution by himself, mainly due to the large number of constraints that must be satisfied. To understand how today’s EDA tools reach solutions and how a yield estimation technique can be embedded in those tools, this chapter presents information about the different techniques adopted in automatic analog IC sizing tools. Additionally, some background information about circuit parameters considered during the sizing process is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Medeiro, R. Rodríguez-Macías, F. Fernández, R. Domínguez-Castro, J. Huertas, A. Rodríguez-Vázquez, Global design of analog cells using statistical optimization techniques. Analog Integr. Circ. Sig. Process 6(3), 179–195 (1994)

    Article  Google Scholar 

  2. E. Nowak, I. Aller, T. Ludwig, K. Kim, R. Joshi, C.-T. Chuang, K. Bernstein, R. Puri, Turning silicon on its edge [double gate CMOS/FinFET technology]. IEEE Circuits Devices Mag. 20(1), 20–31 (2004)

    Article  Google Scholar 

  3. B. Swahn, S. Hassoun, Gate sizing: finFETs vs 32nm bulk MOSFETs, in 2006 43rd ACM/IEEE Des. Automat. Conf., San Francisco, CA, 2006

    Google Scholar 

  4. R.A. Rutenbar, Analog layout synthesis: what’s missing? in Proc. 19th Int. Symp. Physical Des., San Francisco, CA, USA, 2010

    Google Scholar 

  5. B. Dobkin, J. Williams, Analog Circuit Design, Immersion in the Black Art of Analog Design, vol 2 (Newnes, Amsterdam, 2013)

    Google Scholar 

  6. R. Lourenço, N. Lourenço, N. Horta, AIDA-CMK: Multi-Algorithm Optimization Kernel Applied to Analog IC Sizing (Springer International Publishing, Cham, 2015)

    Book  MATH  Google Scholar 

  7. G.G.E. Gielen, R.A. Rutenbar, Computer-aided design of analog and mixed-signal integrated circuits. Proc. IEEE 88(12), 1825–1854 (2000)

    Article  Google Scholar 

  8. A. Gerlach, J. Scheible, T. Rosahl, F. Eitrich, A generic topology selection method for analog circuits demonstrated on the OTA example, in 2015 11th Conf. Ph.D. Research in Microelectronics and Electronics (PRIME), Glasgow, 2015

    Google Scholar 

  9. P. Veselinovic, D. Leenaerts, W. van Bokhoven, F. Leyn, F. Proesmans, G. Gielen, W. Sansen, A flexible topology selection program as part of an analog synthesis system, in Proc. 1995 European Conf. Design and Test, Washington, DC, USA, 1995

    Google Scholar 

  10. A. Gerlach, T. Rosahl, F.-T. Eitrich, J. Scheible, A generic topology selection method for analog circuits with embedded circuit sizing demonstrated on the OTA example, in 2017 Des. Automat. Test Eur. Conf. Exhibition (DATE), Lausanne, Switzerland, 2017

    Google Scholar 

  11. H.E. Graeb, Analog Design Centering and Sizing (Springer, Dordrecht, 2007)

    Google Scholar 

  12. N. Lourenço, R. Martins, N. Horta, Automatic Analog IC Sizing and Optimization Constrained with PVT Corners and Layout Effects (Springer International Publishing, Cham, 2017)

    Book  Google Scholar 

  13. R. Schwencker, F. Schenkel, M. Pronath, H. Graeb, Analog circuit sizing using adaptive worst-case parameter sets, in 2002 Des. Automat. Test Eur. Conf. Exhibition (DATE), Paris, France, 2002

    Google Scholar 

  14. R. Martins, N. Lourenço, A. Canelas, N. Horta, Stochastic-based placement template generator for analog IC layout-aware synthesis. Integration VLSI J. 58, 485–495 (2017)

    Article  Google Scholar 

  15. R. Martins, N. Lourenço, N. Horta, Analog Integrated Circuit Design Automation – Placement, Routing and Parasitic Extraction Techniques (Springer International Publishing, Cham, 2017)

    Google Scholar 

  16. B. Cardoso, R. Martins, N. Lourenço, N. Horta, AIDA-PEx: accurate parasitic extraction for layout-aware analog integrated circuit sizing, in 2015 11th Conf. Ph.D. Res. Microelectron. Electron. (PRIME), Glasgow, 2015

    Google Scholar 

  17. Tanner Calibre One Suite, Mentor Graphics, a Siemens Business. [Online]. Available: https://www.mentor.com/tannereda/calibre-one. Accessed 12 Nov 2018

  18. M. Barros, J. Guilherme, N. Horta, Analog Circuits and Systems Optimization Based on Evolutionary Computation Techniques (Springer-Verlag, Berlin, 2010)

    Book  MATH  Google Scholar 

  19. M. Degrauwe, O. Nys, E. Dijkstra, et al., IDAC: an interactive design tool for analog CMOS circuits. IEEE J. Solid-State Circuits 22(6), 1106–1116 (1987)

    Article  Google Scholar 

  20. R. Harjani, R. Rutenbar, L. Carley, OASYS: a framework for analog circuit synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(12), 1247–1266 (1989)

    Article  Google Scholar 

  21. N. Horta, J.E. Franca, High-level data conversion synthesis by symbolic methods, in IEEE Int. Symp. on Circuits and Systems. ISCAS 96, Atlanta, GA, 1996

    Google Scholar 

  22. N. Horta, J.E. Franca, Algorithm-driven synthesis of data conversion architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(10), 1116–1135 (1997)

    Article  Google Scholar 

  23. N. Horta, Analogue and mixed-signal systems topologies exploration using symbolic methods. Analog Integr. Circuits Sig. Process. 31(2), 161–176 (2002)

    Article  Google Scholar 

  24. D. Stefanovic, M. Kayal, M. Pastre, V.B. Litovski, Procedural analog design (PAD) tool, in Proc. 4th Int. Symp. on Quality Electronic Design, 2003

    Google Scholar 

  25. D. Stefanovic, M. Kayal, Structured Analog CMOS Design, 1st edn. (Springer, Dordrecht, 2008)

    Book  Google Scholar 

  26. F. El-Turky, E.E. Perry, BLADES: an artificial intelligence approach to analog circuit design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 8(6), 680–692 (1989)

    Article  Google Scholar 

  27. C. Toumazou, C.A. Makris, Analog IC design automation. I. Automated circuit generation: new concepts and methods. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14(2), 218–238 (1995)

    Article  Google Scholar 

  28. C.A. Makris, C. Toumazou, Analog IC design automation. II. Automated circuit correction by qualitative reasoning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 14(2), 239–254 (1995)

    Article  Google Scholar 

  29. C. Faragó, A. Lodin, R. Groza, An operational transcondutance amplifier sizing methodology with genetic algorithm-based optimization. Acta Technica Napocensis. Electronica-Telecomunicatii 55(1), 15–20 (2014)

    Google Scholar 

  30. Cadence Design Systems, Inc., Virtuoso analog design environment family, 2014. [Online]. Available: https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/custom-ic-analog-rf-design/virtuoso-analog-design-fam-ds.pdf. Accessed 13 Sept 2018

  31. MunEDA GmbH, muneda.com—Solutions optimization overview, 2018. [Online]. Available: https://muneda.com/solutions_optimization_overview.php. Accessed 13 Sept 2018

  32. D. Payne, SemiWiki.com—Analog circuit optimization, 18 Apr 2012. [Online]. Available: https://www.semiwiki.com/forum/content/1194-analog-circuit-optimization.html. Accessed 13 Sept 2018

  33. Synopsys, Inc., Synopsys completes acquisition of magma design automation, 22 Feb 2012. [Online]. Available: https://news.synopsys.com/index.php?s=20295&item=123356. Accessed 13 Sept 2018

  34. H. Graeb, S. Zizala, J. Eckmueller, K. Antreich, The sizing rules method for analog integrated circuit design, in IEEE/ACM Int. Conf. Comput. Aided Des. ICCAD 2001, San Jose, CA, USA, 2001

    Google Scholar 

  35. T. Massier, H. Graeb, U. Schlichtmann, The sizing rules method for CMOS and bipolar analog integrated circuit synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(12), 2209–2222 (2008)

    Article  Google Scholar 

  36. S. Kiranyaz, T. Ince, M. Gabbouj, Optimization techniques: an overview, in Multidimensional Particle Swarm Optimization for Machine Learning and Pattern Recognition, (Springer, Berlin, 2014), pp. 13–44

    Chapter  MATH  Google Scholar 

  37. E. Tas, M. Memmedli, Near optimal step size and momentum in gradient descent for quadratic functions. Turk. J. Math. 41(1), 110–121 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. G.K. Wen, M. Mamat, I.B. Mohd, Y. Dasril, A novel of step size selection procedures for steepest descent method. Appl. Math. Sci. 6(51), 2507–2518 (2012)

    MathSciNet  MATH  Google Scholar 

  39. T.C. Hu, A.B. Kahng, Linear and Integer Programming Made Easy (Springer International Publishing, Cham, 2016)

    Book  MATH  Google Scholar 

  40. W.L. Winston, Operations Research: Applications and Algorithms, 4th edn. (Brooks/Cole—Thomson Learning, Belmont, CA, 2004)

    MATH  Google Scholar 

  41. S. Boyd, S.-J. Kim, L. Vandenberghe, A. Hassibi, A tutorial on geometric programming. J. Optim. Eng. 8(1), 67–127 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Nourani, B. Andresen, A comparison of simulated annealing cooling strategies. J. Phys. A Math. Gen. 31(41), 8373–8385 (1998)

    Article  MATH  Google Scholar 

  44. V. Torczon, On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Phelps, M. Krasnicki, R.A. Rutenbar, L.R. Carley, J.R. Hellums, Anaconda: simulation-based synthesis of analog circuits via stochastic pattern search. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(6), 703–717 (2000)

    Article  Google Scholar 

  46. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proc. ICNN’95—Int. Conf. Neural Networks, Perth, WA, Australia, 1995

    Google Scholar 

  47. M. Juneja, S.K. Nagar, Particle swarm optimization algorithm and its parameters: a review, in 2016 Int. Conf. Contr., Comput., Commun. Mater. (ICCCCM), Allahabad, 2016

    Google Scholar 

  48. M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  49. S.-C. Chu, H.-C. Huang, J.F. Roddick, J.-S. Pan, Overview of algorithms for swarm intelligence, in Comput. Collective Intell. Technol. Appl.: 3rd Int. Conf., ICCCI 2011, Gdynia, Poland, 21–23 Sept 2011, Proc., Part I, ed. by P. Jędrzejowicz, N.T. Nguyen, K. Hoang (2011)

    Google Scholar 

  50. C. Blum, Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005)

    Article  Google Scholar 

  51. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  52. J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence (MIT Press, Cambridge, MA, 1992)

    Book  Google Scholar 

  53. K. Jebari, M. Madiafi, Selection methods for genetic algorithms. Int. J. Emerg. Sci. 3(4), 333–344 (2013)

    Google Scholar 

  54. K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  55. M. Reyes-sierra, C.A.C. Coello, Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

    MathSciNet  Google Scholar 

  56. Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  57. K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

    Article  Google Scholar 

  58. S. Chand, M. Wagner, Evolutionary many-objective optimization: a quick-start guide. Surv. Oper. Res. Manag. Sci. 20(2), 35–42 (2015)

    MathSciNet  Google Scholar 

  59. D.K. Saxena, T. Ray, K. Deb, A. Tiwari, Constrained many-objective optimization: a way forward, in 2009 IEEE Congr. Evol. Computation, Trondheim, 2009

    Google Scholar 

  60. H.Y. Koh, C.H. Sequin, P.R. Gray, OPASYN: a compiler for CMOS operational amplifiers. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 9(2), 113–125 (1990)

    Article  Google Scholar 

  61. J.P. Harvey, M.I. Elmasry, B. Leung, STAIC: an interactive framework for synthesizing CMOS and BiCMOS analog circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11(11), 1402–1417 (1992)

    Article  Google Scholar 

  62. Y.L. Chen, W.R. Wu, C.N.J. Liu, J.C.M. Li, Simultaneous optimization of analog circuits with reliability and variability for applications on flexible electronics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 33(1), 24–35 (2014)

    Article  Google Scholar 

  63. M. del Mar Hershenson, S.P. Boyd, T.H. Lee, Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(1), 1–21 (2001)

    Article  Google Scholar 

  64. P. Mandal, V. Visvanathan, CMOS op-amp sizing using a geometric programming formulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 20(1), 22–38 (2001)

    Article  Google Scholar 

  65. M. del Mar Hershenson, Design of pipeline analog-to-digital converters via geometric programming, in IEEE/ACM Int. Conf. Comput. Aided Des., 2002

    Google Scholar 

  66. M. del Mar Hershenson, CMOS analog circuit design via geometric programming, in Proc. Amer. Control Conf., Boston, MA, 2004

    Google Scholar 

  67. A.K. Singh, K. Ragab, M. Lok, C. Caramanis, M. Orshansky, Predictable equation-based analog optimization based on explicit capture of modeling error statistics. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 31(10), 1485–1498 (2012)

    Article  Google Scholar 

  68. E.S. Ochotta, R.A. Rutenbar, L.R. Carley, Synthesis of high-performance analog circuits in ASTRX/OBLX. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 15(3), 273–294 (1996)

    Article  Google Scholar 

  69. L.T. Pileggi, R.A. Rohrer, Asymptotic waveform evaluation for timing analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 9, 352–366 (1990)

    Article  Google Scholar 

  70. K.H. Meng, P.C. Pan, H.M. Chen, Integrated hierarchical synthesis of analog/RF circuits with accurate performance mapping, in 12th Int. Symp. Quality Electron. Des., Santa Clara, CA, 2011

    Google Scholar 

  71. B. Benhala, An improved ACO algorithm for the analog circuits design optimization. Int. J. Circuits Syst. Sig. Process. 10, 126–133 (2016)

    Google Scholar 

  72. M. Fakhfakh, Y. Cooren, A. Sallem, M. Loulou, P. Siarry, Analog circuit design optimization through the particle swarm optimization technique. Analog Integr. Circuits Sig. Process. 63(1), 71–82 (2010)

    Article  Google Scholar 

  73. S. Kamisetty, J. Garg, J.N. Tripathi, J. Mukherjee, Optimization of analog RF circuit parameters using randomness in particle swarm optimization, in 2011 World Congr. Inform. Commun. Technol., Mumbai, 2011

    Google Scholar 

  74. A. El Dor, M. Fakhfakh, P. Siarry, Multiobjective differential evolution algorithm using crowding distance for the optimal design of analog circuits. J. Electr. Syst. 12(3), 612–622 (2016)

    Google Scholar 

  75. N. Lourenço, R. Martins, A. Canelas, R. Póvoa, N. Horta, AIDA: layout-aware analog circuit-level sizing with in-loop layout generation. Integration VLSI J. 55, 316–329 (2016)

    Article  Google Scholar 

  76. R. Santos-Tavares, N. Paulino, J. Higino, J. Goes, J.P. Oliveira, Optimization of multi-stage amplifiers in deep-submicron CMOS using a distributed/parallel genetic algorithm, in IEEE Int. Symp. Circuits Syst., Seattle, WA, 2008

    Google Scholar 

  77. M. Krasnicki, R. Phelps, R.A. Rutenbar, L.R. Carley, MAELSTROM: efficient simulation-based synthesis for custom analog cells, in Proc. 1999 Des. Autom. Conf., New Orleans, LA, 1999

    Google Scholar 

  78. H. Gupta, B. Ghosh, Analog circuits design using ant colony optimization. Int. J. Electron. Comput. Commun. Technol. 2(3), 9–21 (2012)

    Google Scholar 

  79. B. Benhala, O. Bouattane, GA and ACO techniques for the analog circuits design optimization. J. Theor. Appl. Inf. Technol. 64(2), 413–419 (2014)

    Google Scholar 

  80. M. Dehbashian, M. Maymandi-Nejad, A new hybrid algorithm for analog ICs optimization based on the shrinking circles technique. Integration VLSI J. 56, 148–166 (2017)

    Article  Google Scholar 

  81. M.B. Yelten, T. Zhu, S. Koziel, P.D. Franzon, M.B. Steer, Demystifying surrogate modeling for circuits and systems. IEEE Circuits Syst. Mag. 12(1), 45–63 (2012)

    Article  Google Scholar 

  82. B. Liu, G. Gielen, F.V. Fernández, Automated Design of Analog and High-Frequency Circuits (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  83. R. Bellman, Adaptive Control Processes: A Guided Tour (Princeton University Press, Princeton, NJ, 1961)

    Book  MATH  Google Scholar 

  84. H. Abdi, L.J. Williams, Principal component analysis. WIREs Comput. Stat. 2(4), 433–459 (2010)

    Article  Google Scholar 

  85. A. Giunta, S. Wojtkiewicz, M. Eldred, Overview of modern design of experiments methods for computational simulations, in 41st Aerospace Sci. Meeting Exhibit, Reno, Nevada, 2003

    Google Scholar 

  86. H. Niederreiter, Random number generation and quasi-Monte Carlo methods. Soc. Ind. Appl. Math. (1992)

    Google Scholar 

  87. X. Wang, I.H. Sloan, Low discrepancy sequences in high dimensions: how well are their projections distributed? J. Comput. Appl. Math. 213(2), 366–386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  88. C. Schlier, On scrambled Halton sequences. Appl. Numer. Math. 58(10), 1467–1478 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  89. H. You, M. Yang, D. Wang, X. Jia, Kriging Model combined with latin hypercube sampling for surrogate modeling of analog integrated circuit performance, in 2009 10th Int. Symp. Quality Electron. Des., San Jose, CA, 2009

    Google Scholar 

  90. G. Matheron, Principles of geostatistics. Econ. Geol. 58(8), 1246–1266 (1963)

    Article  Google Scholar 

  91. F. Yengui, L. Labrak, P. Russo, F. Frantz, N. Abouchi, Optimization based on surrogate modeling for analog integrated circuits, in 2012 19th IEEE Int. Conf. Electron. Circuits Syst. (ICECS 2012), Seville, 2012

    Google Scholar 

  92. M. Buhmann, Radial Basis Functions: Theory and Implementations (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  93. W. Hendrickx, T. Dhaene, Sequential design and rational metamodelling, in Proc. Winter Simulation Conf., Orlando, FL, 2005

    Google Scholar 

  94. F.D. Bernardinis, M.I. Jordan, A.S. Vincentelli, Support vector machines for analog circuit performance representation, in Proc. Des. Autom. Conf., Anaheim, CA, 2003

    Google Scholar 

  95. M. Barros, J. Guilherme, N. Horta, GA-SVM feasibility model and optimization, in ACM Great Lakes Symp. VLSI, Stresa-Lago Maggiore, 2007

    Google Scholar 

  96. G. Alpaydin, S. Balkir, G. Dundar, An evolutionary approach to automatic synthesis of high-performance analog integrated circuits. IEEE Trans. Evol. Comput. 7(3), 240–252 (2003)

    Article  Google Scholar 

  97. K.H. Lee, First Course on Fuzzy Theory and Applications (Springer Science & Business Media, Berlin, 2006)

    Google Scholar 

  98. T. McConaghy, K. Breen, J. Dyck, A. Gupta, Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide (Springer, New York, 2013)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canelas, A.M.L., Guilherme, J.M.C., Horta, N.C.G. (2020). Analog IC Sizing Background. In: Yield-Aware Analog IC Design and Optimization in Nanometer-scale Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-41536-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41536-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41535-8

  • Online ISBN: 978-3-030-41536-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics