Skip to main content

Detection of Milk Fat Adulteration

  • Chapter
  • First Online:
Dairy Fat Products and Functionality

Abstract

Milk fat has been acclaimed as an indispensable superfood as its nutritional and sensory attributes offer plenty of health benefits (Achaya, 1997). It possesses good flavour, pleasant aroma, high calorific value, besides being a source of valuable nutrients such as fat-soluble vitamins and essential fatty acids. The prices of milk fat have shown upward trend due to the growing demand for it in developed countries which has been attributed to the shift in the opinion of the health concern related to its consumption (OECD/FAO, 2018). International Dairy Federation (IDF) has also noted that over the years there has been a shift in demand from vegetable oil based substitutes to butter and dairy fat due to positive health assessment of milk fat and its sensory properties (IDF, 2018). Increased price and fluctuation in its seasonal availability offers an advantage to the milk fat manufacturers to fraudulently adulterate it with cheaper oils/fats to reduce production costs and increase profit margins. Economic advantage of replacing high-priced fats and oils with low-priced oils without labeling the product accordingly escalates the adulteration of expensive oils and fats such as milk fat. This also poses a risk to human health and decreases its functional value (Ntakatsane, Liu, & Zhou, 2013). Characterization of milk fat for its purity is an absolute necessity in order to ensure a constant well-defined quality. Detection of adulterants in milk fat has always been a challenge because of the variable composition of the triglycerides present. The challenge to detect foreign fats in milk become bigger because of the seasonal, species or breeds related variation in the properties of milk fat. Further, the advent of hydrogenated vegetable oil (HVO) industry in the middle of the twentieth century led to large scale adulteration of milk fat with HVO due to the matching physical properties of both fats. Studies related to the detection and quantification of foreign fats in dairy products have been conducted for many decades and constitute priority areas in many research centers (Fontecha, Mayo, Toledano, & Juárez, 2006; Lipp, 1996; Parodi, 1971; Rebechi, Vélez, Vaira, & Perotti, 2016; Timms, 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achaya, K. T. (1997). Ghee, vanaspati and special fats in India. New York, NY: Marcel Dekker.

    Google Scholar 

  • Akoh, C. (2017). Food lipids: Chemistry, nutrition, and biotechnology. Boca Raton, FL: CRC Press Taylor and Francis Group.

    Book  Google Scholar 

  • Aktaş, N., & Kaya, M. (2001). Detection of beef body fat and margarine in butterfat by differential scanning calorimetry. Journal of Thermal Analysis and Calorimetry, 66, 795–801. https://doi.org/10.1023/A:1013196106365

    Article  Google Scholar 

  • Amrutha Kala, A. L. (2013). Detection of possible adulteration in commercial ghee samples using low-resolution gas chromatography triglyceride profiles. International Journal of Dairy Technology, 66, 346–351. https://doi.org/10.1111/1471-0307.12049

    Article  CAS  Google Scholar 

  • ANMAT (2011). Código Alimentario Argentino. (Chap. 8) Alimentos Lácteos. Retrieved 28 October, 2018, from http://www.anmat.gov.ar/codigoa/caa1.htm

  • Bartlet, J. C., & Chapman, D. G. (1961). Butter adulteration, detection of hydrogenated fats in butter fat by measurement of cis-trans conjugated unsaturation. Journal of Agricultural and Food Chemistry, 9, 50–53.

    Article  CAS  Google Scholar 

  • BIS. (1966). Indian standards. Methods for sampling and test for ghee (butterfat). IS 3508: 1960, Amended 2013. New Delhi, India: Bureau of Indian Standards.

    Google Scholar 

  • Chen, J. T., Wesley, R., Shamburek, R. D., Pucino, F., & Csako, G. (2005). Meta-analysis of natural therapies for hyperlipidemia: Plant sterols and stanols versus policosanol. Pharmacotherapy, 25, 171–183. https://doi.org/10.1016/j.chroma.2006.07.040

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury, K., Banu, L. A., Khan, S., & Latif, A. (2007). Studies on the fatty acid composition of edible oil. Bangladesh Journal of Scientific and Industrial Research, 42(3), 311−316.

    Google Scholar 

  • Commission Regulation (EC) No 213/2001. (2001). Methods for the analysis and quality evaluation of milk and milk products. Commission Regulation (EC) No. 213/01 of 9 January. Official Journal of the European Community, L37, 42–99.

    Google Scholar 

  • Coni, E., Di Pasquale, M., Coppolelli, P., & Bocca, A. (1994). Detection of animal fats in butter by differential scanning calorimetry: A pilot study. Journal of the American Oil Chemists’ Society, 71, 807–810. https://doi.org/10.1007/BF02540453

    Article  CAS  Google Scholar 

  • Costa, J., Mafra, I., & Oliveira, M. B. P. P. (2012). Advances in vegetable oil authentication by DNA-based markers. Trends in Food Science and Technology, 26, 43–55.

    Article  CAS  Google Scholar 

  • Destaillats, F., de Wispelaere, M., Joffre, F., Golay, P. A., Hug, B., Giuffrida, F., Fauconnot, L., & Dionisi, F. (200 6). Authenticity of milk fat by fast analysis of triacylglycerols: Application to the detection of partially hydrogenated vegetable oils. Journal of Chromatography. A, 1131, 227–234. https://doi.org/10.1016/j.chroma.2006.07.040

    Article  CAS  PubMed  Google Scholar 

  • Di Pinto, A., Terio, V., Marchetti, P., Bottaro, M., Mottola, A., Bozzo, G., Bonerba, E., Ceci, E., & Tantillo, G. (2017). DNA-based approach for species identification of goat-milk products. Food Chemistry, 229, 93–97. https://doi.org/10.1016/j.foodchem.2017.02.067

    Article  CAS  PubMed  Google Scholar 

  • Dilip, P., Bindal, M. P., & Panda, D. (1998). Detection of adulteration in ghee with animal body fats and vegetable oils using opacity test. Journal of Dairying, Foods and Home Sciences, 17, 31–36.

    Google Scholar 

  • DIN 10336: 1994-09. (1994). Nachweis und Bestimmung von Fremdfetten in Milchfett anhand einer gaschromatographischen Triglyceridanalyse. Berlin, Germany: BeuthVerlag GmbH.

    Google Scholar 

  • Fadzlillah, N. A., Rohman, A., Rosman, A. S., Yusof, F. M., Ismail, A., Mustaffa, S., Minhat, A. E., & Khatib, A. (2016). Differentiation of fatty acid composition of butter adulterated with lard using gas chromatography mass spectrometry combined with principal component analysis. Jurnal Teknologi, 78(2), 71–177.

    Google Scholar 

  • Fadzlillah, N. A., Rohman, A., Ismail, A., Mustafa, S., & Khatib, A. (2013). Application of FTIR-ATR spectroscopy coupled with multivariate analysis for rapid estimation of butter adulteration. Journal of Oleo Science, 62, 555–562. https://doi.org/10.5650/jos.62.555

    Article  PubMed  CAS  Google Scholar 

  • Fontecha, J., Mayo, I., Toledano, G., & Juárez, M. (2006). Triacylglycerol composition of protected designation of origin cheeses during ripening. Authenticity of milk fat. Journal of Dairy Science, 89, 882–887.

    Article  CAS  PubMed  Google Scholar 

  • Fox, P. F., Uniacke-Lowe, T., Mcsweeney, P. L., H. & O’Mahony, J. A. (2015). Dairy chemistry and biochemistry (2nd ed.). Cham, Switzerland: Springer.

    Google Scholar 

  • FSSAI Rules. (2011). Akalank’s food safety and standards act, rules and regulation. New Delhi, India: Akalank Publication.

    Google Scholar 

  • Gandhi, K. (2014). Detection of palm olein and sheep body fat adulteration in ghee using solvent fractionation technique. Karnal, India: NDRI.

    Google Scholar 

  • Gandhi, K., Kumar, A., & Lal, D. (2015). Iodine value integrated with solvent fractionation technique as a tool for detecting palm olein and sheep body fat adulteration in ghee (clarified milk fat). Indian Journal of Dairy Science, 68, 347–351.

    Google Scholar 

  • Gandhi, K., Kumar, A., & Lal, D. (2018). Solvent fractionation technique paired with apparent solidification time (AST) test as a method to detect palm olein and sheep body fat in ghee (clarified milk fat). Indian Journal of Dairy Science, 71, 246–251.

    Google Scholar 

  • Gandhi, K., & Lal, D. (2017). Butyro-refractometer (BR) reading linked with solvent fractionation technique as an aid to detect adulteration of palm olein and sheep body fat in ghee. Indian Journal of Natural Products and Resources, 8, 276–281.

    Google Scholar 

  • Gandhi, K., Upadhyay, N., Aghav, D., Sharma, V., & Lal, D. (2014). Detection of adulteration of ghee (clarified milk fat) with palmolein and sheep body fat using Reichert-Meissl (RM) value coupled with solvent fractionation technique. Indian Journal of Dairy Science, 67, 387–393.

    Google Scholar 

  • González-Larena, M., García-Llatas, G., Vidal, M. C., Sánchez-Siles, L. M., Barberá, R., & Lagarda, M. J. (2011). Stability of plant sterols in ingredients used in functional foods. Journal of Agricultural and Food Chemistry, 59(8), 3624–3631.

    Google Scholar 

  • Hazra, T., Sharma, V., Sharma, R., & Arora, S. (2017). A species specific simplex polymerase chain reaction-based approach for detection of goat tallow in heat clarified milk fat (ghee). International Journal of Food Properties, 20, S69–S75. https://doi.org/10.1080/10942912.2017.1289542

    Article  CAS  Google Scholar 

  • Hrbek, V., Vaclavik, L., Elich, O., & Hajslova, J. (2014). Authentication of milk and milk-based foods by direct analysis in real time ionization–high resolution mass spectrometry (DART–HRMS) technique: A critical assessment. Food Control, 36(1), 138–145.

    Google Scholar 

  • IDF. (2006a). Anhydrous milk fat – Determination of sterol composition by gas liquid chromatography (Routine method). IDF 200: 2006. Brussels, Belgium: International Dairy Federation.

    Google Scholar 

  • IDF. (2006b). Anhydrous milk fat – Determination of sterol composition by gas liquid chromatography (Reference method). IDF 159: 2006. Brussels, Belgium: International Dairy Federation.

    Google Scholar 

  • IDF. (2010). Milk and milk products – Determination of milk fat purity by gas chromatographic analysis of triglycerides (Reference method). IDF 202:2010. Brussels, Belgium: International Dairy Federation.

    Google Scholar 

  • IDF. (2018). IDF Press Release. OECD expects dairy fat consumption to increase. July 3, 2018. Brussels, Belgium.

    Google Scholar 

  • ISO. (1976). Milk fat - Detection of vegetable fat by the phytosteryl acetate test. ISO 3595: 1976. Geneva, Switzerland: International Organization for Standardization.

    Google Scholar 

  • Jha, J. S. (1981). Spectrophotometric studies of cheuri (Madhucabutyracea) fat and ghee mixtures: I. Journal of the American Oil Chemists’ Society, 58, 843–845. https://doi.org/10.1007/BF02672954

    Article  CAS  Google Scholar 

  • Kamm, W., Dionisi, F., Fay, L. B., Hischenhuber, C., Schmarr, H. G., & Engel, K. H. (2001). Analysis of steryl esters in cocoa butter by on-line liquid chromatography–gas chromatography. Journal of Chromatography. A, 918(2), 341–349.

    Google Scholar 

  • Kapur, O. P., Srinivasan, M., & Subrahmanyan, V. (1960). Colouring of vanaspati with curcumin from turmeric. Current Science, 29, 350–351.

    Google Scholar 

  • Karacaglar, N. N. Y., Bulat, T., Boyaci, I. H., & Topcu, A. (2018). Raman spectroscopy coupled with chemometric methods for the discrimination of foreign fats and oils in cream and yogurt. Journal of Food and Drug Analysis, 27(1), 101–110. https://doi.org/10.1016/j.jfda.2018.06.008

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Kim, D. N., Lee, S. H., Yoo, S. H., & Lee, S. (2010). Correlation of fatty acid composition of vegetable oils with rheological behaviour and oil uptake. Food Chemistry, 118, 398–402. https://doi.org/10.1016/j.foodchem.2009.05.011

    Article  CAS  Google Scholar 

  • Kim, J. M., Kim, H. J., & Park, J. M. (2015). Determination of milk fat adulteration with vegetable oils and animal fats by gas chromatographic analysis. Journal of Food Science, 80, 1945–1951. https://doi.org/10.1111/1750-3841.12979

    Article  CAS  Google Scholar 

  • Kirk, R. S., & Sawyer, R. (1991). Pearson’s composition and analysis of foods. Boston, MA: Addison-Wesley Longman Ltd.

    Google Scholar 

  • Konevets, V. I., Roganoua, Z. A., & Smolyanski, A. L. (1987). Use of infra-red spectroscopy for analysing fats of different origin. Izv Vyrshikh O Chebnykh Zavad Pischevaya Tekhnologiya, 1, 64–67.

    Google Scholar 

  • Kumar, A. (2008). Detection of adulterants in ghee. PhD Thesis. Submitted to National Dairy Research Institute (Deemed University), Karnal, India.

    Google Scholar 

  • Kumar, A., Kumar, A., Lal, D., Seth, R., & Sharma, V. (2010). Validation of ultra-violet and visible spectroscopic methods for detection of milk fat adulteration. Journal of Dairy and Food, 29(1), 8–14.

    Google Scholar 

  • Kumar, A., Lal, D., Seth, R., & Sharma, R. (2005). Approaches for detection of adulteration in milk fat-an overview. Indian Dairyman, 57, 31.

    Google Scholar 

  • Kumar, A., Lal, D., Seth, R., & Sharma, V. (2010). Detection of milk fat adulteration with admixture of foreign oils and fats using a fractionation technique and the apparent solidification time test. International Journal of Dairy Technology, 63, 457–462. https://doi.org/10.1111/j.1471-0307.2010.00562.x

    Article  CAS  Google Scholar 

  • Kumar, A., Upadhyay, N., Gandhi, K., Naik, S. N., & Sharma, V. (2017). Detection of adulteration in anhydrous milk fat using season variation in Butyro-refractometer reading studied by employing dry fractionation technique. Indian Journal of Dairy Science, 70, 563–570.

    Google Scholar 

  • Kumar, A., Upadhyay, N., Padghan, P. V., Gandhi, K., Lal, D., & Sharma, V. (2015). Detection of vegetable oil and animal depot fat adulteration in anhydrous milk fat (ghee) using fatty acid composition. MOJ Food Processing & Technology, 1, 13–19. https://doi.org/10.15406/mojfpt.2015.01.00013

  • Kumar, S., Kahlon, T., & Chaudhary, S. (2011). A rapid screening for adulterants in olive oil using DNA barcodes. Food Chemistry, 127, 1335–1341. https://doi.org/10.1016/j.foodchem.2011.01.094

    Article  CAS  PubMed  Google Scholar 

  • Lambelet, P., & Ganguli, N. C. (1983). Detection of pig and buffalo body fat in cow and buffalo ghees by differential scanning calorimetry. Journal of the American Oil Chemists’ Society, 60, 1005–1008. https://doi.org/10.1007/BF02660216

    Article  CAS  Google Scholar 

  • Liao, J., Liu, Y. F., Ku, T., Liu, M. H., & Huang, Y. (2017). Qualitative and quantitative identification of adulteration of milk powder using DNA extracted with a novel method. Journal of Dairy Science, 100, 1657–1663. https://doi.org/10.3168/jds.2016-11900

    Article  CAS  PubMed  Google Scholar 

  • Lipp, M. (1996). Determination of the adulteration of butter fat by its triglyceride composition obtained by GC. A comparison of the suitability of PLS and neural networks. Food Chemistry, 55(4), 389–395.

    Article  CAS  Google Scholar 

  • Månsson, L. (2008). Fatty acids in bovine milk fat. Food & Nutrition Research, 52, 1821.

    Article  Google Scholar 

  • Molkentin, J. (2007). Detection of foreign fat in milk fat from different continents by triacylglycerol analysis. European Journal of Lipid Science and Technology, 109, 505–510.

    Article  CAS  Google Scholar 

  • Ntakatsane, M. P., Liu, X. M., & Zhou, P. (2013). Short communication: Rapid detection of milk fat adulteration with vegetable oil by fluorescence spectroscopy. Journal of Dairy Science, 96, 2130–2136. https://doi.org/10.3168/jds.2012-6417

    Article  CAS  PubMed  Google Scholar 

  • Nurrulhidayah, A. F., Arieff, S. R., Rohman, A., Amin, I., Shuhaimi, M., & Khatib, A. (2015). Detection of butter adulteration with lard using differential scanning calorimetry. International Food Research Journal, 22, 832–839. https://doi.org/10.1007/s10973-011-1913-y

    Article  CAS  Google Scholar 

  • OECD/FAO. (2018). OECD-FAO agricultural outlook 2018-2027. Rome, Italy: OECD Publishing, Paris/Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Panda, D., & Bindal, M. P. (1998). Detection of adulteration in ghee with animal body fat and vegetable oils using crystallization test. Indian Dairyman, 50, 13–20.

    Google Scholar 

  • Park, J. M., Kim, N. K., Yang, C. Y., Moon, K. W., & Kim, J. M. (2014). Determination of the authenticity of dairy products on the basis of fatty acids and triacylglycerols content using GC analysis. Korean Journal for Food Science of Animal Resources, 34, 316–324. https://doi.org/10.5851/kosfa.2014.34.3.316

    Article  PubMed  PubMed Central  Google Scholar 

  • Parodi, P. W. (1969). Detection of a synthetic milkfat. Australian Journal of Dairy Technology, 24, 56.

    CAS  Google Scholar 

  • Parodi, P. W. (1971). Detection of synthetic and adulterated butterfat 3. Triglyceride fatty acid analysis. Australian Journal of Dairy Technology, 26, 155.

    CAS  Google Scholar 

  • Poonia, A., Jha, A., Sharma, R., Singh, H. B., Rai, A.K., Sharma, N. (2017). Detection of adulteration in milk: A review. International Journal of Dairy Technology, 70, 23–42.

    Article  CAS  Google Scholar 

  • Povolo, M., Pelizzola, V., & Contarini, G. (2008). Directly resistively heated-column gas chromatography for the evaluation of cow milk fat purity. European Journal of Lipid Science and Technology, 110, 1050–1057. https://doi.org/10.1002/ejlt.200800010

    Article  CAS  Google Scholar 

  • Precht, D. (1992). Detection of foreign fat in milk fat II. Quantitative evaluation of foreign fat mixtures. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 194, 107–114. https://doi.org/10.1007/BF01190178

    Article  CAS  Google Scholar 

  • Rangappa, K. S., & Achaya, K. T. (1974). Indian dairy products. Mumbai, India: Asia Publishing House.

    Google Scholar 

  • Rani, A., Sharma, V., Arora, S., Lal, D., & Kumar, A. (2015). A rapid reversed-phase thin layer chromatographic protocol for detection of adulteration in ghee (clarified milk fat) with vegetable oils. Journal of Food Science and Technology, 52, 2434–2439.

    Google Scholar 

  • Rani, A., Sharma, V., Arora, S., Ghai, D. L. (2016). Comparison of rapid reversed phase high-performance liquid chromatography (RP-HPLC) method with rapid reversed phase thin layer chromatography method for detecting vegetable oils in ghee (clarified milk fat). International Journal of Food Properties, 19(5), 1154–1162.

    Article  CAS  Google Scholar 

  • Rebechi, S. R., Vélez, M. A., Vaira, S., & Perotti, M. C. (2016). Adulteration of Argentinean milk fats with animal fats: Detection by fatty acids analysis and multivariate regression techniques. Food Chemistry, 192, 1025–1032. https://doi.org/10.1016/j.foodchem.2015.07.107

    Article  CAS  PubMed  Google Scholar 

  • Sato, T., Kawano, S., & Iwamoto, M. (1990). Detection of foreign fat adulteration of milk fat by near infrared spectroscopic method. Journal of Dairy Science, 73, 3408–3413. https://doi.org/10.3168/jds.S0022-0302(90)79037-6

    Article  Google Scholar 

  • Sharma, R., & Singhal, O. P. (1995). Physico-chemical constants of ghee prepared from milk adulterated with foreign fat. Indian Journal of Dairy and Biosciences, 6, 51–53.

    Google Scholar 

  • Sharma, R., & Singhal, O. P. (1996). Fatty acid composition, Bomer value and opacity profile of ghee prepared from milk adulterated with foreign fats. Indian Journal of Dairy Science, 49, 62–67.

    CAS  Google Scholar 

  • Sharma, V., Hazra, T., Kandhol, R., Sharma, R., & Arora, S. (2018). Confirmation of buffalo tallow in anhydrous cow milk fat using gas liquid chromatography in tandem with species-specific polymerase chain reaction. International Journal of Dairy Technology, 71, 158–163. https://doi.org/10.1111/1471-0307.12390

    Article  CAS  Google Scholar 

  • Sharma, V., Lal, D., & Sharma, R. (2007). Color based platform test for the detection of vegetable oils/fats in ghee. Indian Journal of Dairy Science, 60, 16–18.

    Google Scholar 

  • Singhal, O. P. (1973). Studies on ghee clarified butterfat and animal body fats with a view to detect adulteration. Karnal, India: NDRI.

    Google Scholar 

  • Singhal, O. P. (1980). Adulterants and methods for detection. Indian Dairyman, 32, 771–774.

    Google Scholar 

  • Singhal, O. P. (1987). Detection of adulteration in butterfat. NDRI annual report (pp. 64–65). Karnal, India: National Dairy Research Institute.

    Google Scholar 

  • Timms, R. E. (1980). The phase behaviour and polymorphism of milk fat, milk fat fractions and fully hardened milk fat. Australian Journal of Dairy Technology, 35, 47–53.

    CAS  Google Scholar 

  • Timms, R. E. (2005). Fractional crystallisation - the fat modification process for the 21st century. European Journal of Lipid Science and Technology, 107, 48–57. https://doi.org/10.1002/ejlt.200401075

    Article  CAS  Google Scholar 

  • Tomaszewska-Gras, J. (2016). Rapid quantitative determination of butter adulteration with palm oil using the DSC technique. Food Control, 60, 629–635. https://doi.org/10.1016/j.foodcont.2015.09.001

    Article  CAS  Google Scholar 

  • Upadhyay, N., Goyal, A., Kumar, A., & Lal, D. (2017). Detection of adulteration by caprine body fat and mixtures of caprine body fat and groundnut oil in bovine and buffalo ghee using differential scanning calorimetry. International Journal of Dairy Technology, 70, 297–303. https://doi.org/10.1111/1471-0307.12336

    Article  CAS  Google Scholar 

  • Upadhyay, N., Jaiswal, P., & Jha, S. N. (2016). Detection of goat body fat adulteration in pure ghee using ATR-FTIR spectroscopy coupled with chemometric strategy. Journal of Food Science and Technology, 53, 3752–3760. https://doi.org/10.1007/s13197-016-2353-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay, N., Jaiswal, P., & Jha, S. N. (2018). Application of attenuated total reflectance Fourier Transform Infrared spectroscopy (ATR–FTIR) in MIR range coupled with chemometrics for detection of pig body fat in pure ghee (heat clarified milk fat). Journal of Molecular Structure, 1153, 275–281. https://doi.org/10.1016/j.molstruc.2017.09.116

    Article  CAS  Google Scholar 

  • Upadhyay, N., Kumar, A., Goyal, A., & Lal, D. (2017). Complete liquification time test coupled with solvent fractionation technique to detect adulteration of foreign fats in ghee. International Journal of Dairy Technology, 70, 110–118. https://doi.org/10.1111/1471-0307.12323

    Article  CAS  Google Scholar 

  • Upadhyay, N., Kumar, A., Rathod, G., Goyal, A., & Lal, D. (2015). Development of a method employing reversed-phase thin-layer chromatography for establishing milk fat purity with respect to adulteration with vegetable oils. International Journal of Dairy Technology, 68, 207–217. https://doi.org/10.1111/1471-0307.12178

    Article  CAS  Google Scholar 

  • Viriato, R. L. S., de Souza Queirós, M., da Gama, M. A. S., Ribeiro, A. P. B., & Gigante, M. L. (2018). Milk fat as a structuring agent of plastic lipid bases. Food Research International, 111, 120–129. https://doi.org/10.1111/1750-3841.14728

    Article  CAS  PubMed  Google Scholar 

  • Wasnik, P. G., Menon, R. R., Surendra Nath, B., Balasubramanyam, B. V., Manjunatha, M., & Sivaram, M. (2017). Application of pixel intensity, fractal dimension and skeleton parameters for detection of adulteration of cow ghee with vanaspati derived from image analysis. Indian Journal of Dairy Science, 70, 331–337.

    Google Scholar 

  • Wasnik, P. G., Menon, R. R., Surendra Nath, B., Balasubramanyam, B. V., Manjunatha, M., & Sivaram, M. (2017). Application of particle analysis and colour parameters for detection of adulteration of cow ghee with vanaspati derived from image analysis. Indian Journal of Dairy Science, 70, 1–9.

    Google Scholar 

  • Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., Hughes, S. I., Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat science, 78(4), 343–358.

    Article  CAS  PubMed  Google Scholar 

  • Zachariah, S. P., Parmar, S. C., Bhavadasan, M. K., & Nath, B. S. (2010). Detection of adulteration of ghee with coconut oil or palm oil. Indian Journal of Dairy Science, 63, 278–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajan Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Gandhi, K., Battula, S.N., Mann, B. (2020). Detection of Milk Fat Adulteration. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_6

Download citation

Publish with us

Policies and ethics