Skip to main content

Recent Insights into the Diversity and Evolution of Invertebrate Hemerythrins and Extracellular Globins

  • Chapter
  • First Online:
Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins

Part of the book series: Subcellular Biochemistry ((SCBI,volume 94))

Abstract

There are three broad groups of oxygen-transport proteins found in the haemolymph (blood) of invertebrates, namely the hemocyanins, the hemerythrins and the globins. Both hemerythrins and extracellular globins are iron-based proteins that are understudied when compared to the copper-containing hemocyanins. Recent evidence suggests that hemerythrins and (giant) extracellular globins (and their linker chains) are more widely distributed than previously thought and may have biological functions beyond oxygen transport and storage. Herein, we review contemporary literature of these often-neglected proteins with respect to their structural configurations on formation and ancestral states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison AW, Bruce RE (1977) Chemistry of Phascolosoma lurco hemerythrin. Arch Biochem Biophys 183:328–332

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Carreño C, Becerra A, Lazcano A (2016) Molecular evolution of the oxygen-binding hemerythrin domain. PLoS ONE 11(6):e0157904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andreeva A, Howorth D, Brenner SE et al (2004) SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32:226–229

    Article  CAS  Google Scholar 

  • Baert JL, Britel M, Sautière P et al (1992) Ovohemerythrin, a major 14-kDa yolk protein distinct from vitellogenin in leech. Eur J Biochem 209:563–569

    Article  CAS  PubMed  Google Scholar 

  • Bailly X, Jollivet D, Vanin S et al (2002) Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Mol Biol Evol 19(9):1421–1433

    Article  CAS  PubMed  Google Scholar 

  • Bailly X, Vanin S, Chabasse C et al (2008) A phylogenomic profile of hemerythrins, the nonheme diiron binding respiratory proteins. BMC Evol Biol 8:244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belato FA, Schrago CG, Coates CJ et al (2019) Newly discovered occurrences and gene tree of the extracellular globins and linker chains from the giant hexagonal bilayer hemoglobin in metazoans. Genome Biol Evol 11(3):597–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burmester T (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol Biol Evol 18(2):184–195

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2002) Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B 172(2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Burmester T (2015) Evolution of respiratory proteins across the Pancrustacea. Integr Comp Biol 55(5):765–770

    Article  CAS  Google Scholar 

  • Cannon JT, Vellutini BC, Smith J et al (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530(7588):89–93

    Article  CAS  PubMed  Google Scholar 

  • Chabasse C, Bailly X, Rousselot M et al (2006a) The multigenic family of the extracellular hemoglobin from the annelid polychaete Arenicola marina. Comp Biochem Physiol B: Biochem Mol Biol 144(3):319–325

    Article  CAS  Google Scholar 

  • Chabasse C, Bailly X, Sanchez S et al (2006b) Gene structure and molecular phylogeny of the linker chains from the giant annelid hexagonal bilayer hemoglobins. J Mol Evol 63(3):365–374

    Article  CAS  PubMed  Google Scholar 

  • Coates CJ, Decker H (2017) Immunological properties of oxygen-transport proteins: hemoglobin, hemocyanin and hemerythrin. Cell Mol Life Sci 74(2):293–317

    Article  CAS  PubMed  Google Scholar 

  • Costa-Paiva EM, Whelan NV, Waits DS et al (2017a) Discovery and evolution of novel hemerythrin genes in annelid worms. BMC Evol Biol 17(1):85–96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costa-Paiva EM, Schrago CG, Halanych KM (2017b) Broad phylogenetic occurrence of the oxygen-binding hemerythrins in bilaterians. Genome Biol Evol 9(10):2580–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa-Paiva EM, Schrago CG, Coates CJ et al (2018) Discovery of novel hemocyanin-like genes in Metazoans. Biol Bull 235(3):134–151

    Article  CAS  PubMed  Google Scholar 

  • Coutte L, Slomianny MC, Malecha J et al (2001) Cloning and expression analysis of a cDNA that encodes a leech hemerythrin. Biochim Biophys Acta 1518(3):282–286

    Article  CAS  PubMed  Google Scholar 

  • Darawshe S, Tsafadyah Y, Daniel E (1987) Quaternary structure of erythrocruorin from the nematode Ascaris suum. Evidence for unsaturated haem-binding sites. Biochem J 242(3): 689–694

    Google Scholar 

  • Decker H, Hellmann N, Jaenicke E et al (2007) Recent progress in hemocyanin research. Integr Comp Biol 47(4):631–644

    Article  CAS  PubMed  Google Scholar 

  • Deng SX, Landry DW, Kalantarov G et al (2015) Anti-drug vaccines. U.S. Patent 0343042A1, December 3, 2015

    Google Scholar 

  • Demuynck S, Li KW, van der Schors R et al (1993) Amino acid sequence of the small cadmium-binding protein (MP-II) from Nereis diversicolor (Annelida, Polychaeta)—evidence for a myohemerythrin structure. Eur J Biochem 217:151–156

    Article  CAS  PubMed  Google Scholar 

  • Elmer J, Palmer A (2012) Biophysical properties of Lumbricus terrestris erythrocruorin and its potential use as a red blood cell substitute. J Funct Biomater 3(4):49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer CS, Kurtz DM, Liu ZJ et al (2001) The crystal structures of Phascolopsis gouldii wild type and L98Y methemerythrins: structural and functional alterations of the O2 binding pocket. J Biol Inorg Chem 6(4):418–429

    Article  CAS  PubMed  Google Scholar 

  • Ferrell RF, Kitto GB (1971) Structural studies on Dendrostomum pyroides hemerythrin. Biochemistry 10:2923–2929

    Article  CAS  PubMed  Google Scholar 

  • Florkin M (1933) Recherches sur les hémérythrines. Arch Int Physiol 36(2–3):247–282

    CAS  Google Scholar 

  • French CE, Bell JML, Ward FB (2008) Diversity and distribution of hemerythrin-like proteins in prokaryotes. FEMS Microbiol Lett 279(2):131–145

    Article  CAS  PubMed  Google Scholar 

  • Fushitani K, Higashiyama K, Asao M et al (1996) Characterization of the constituent polypeptides of the extracellular hemoglobin from Lumbricus terrestris: heterogeneity and discovery of a new linker chain L4. Biochim Biophys Acta (BBA) 1292(2):273–280

    Article  Google Scholar 

  • Garrone R (1999) Collagen, a common thread in extracellular matrix evolution. Proc Indian Acad Sci - Chem Sci 111(1):51–56

    CAS  Google Scholar 

  • Gell D (2018) Structure and function of haemoglobins. Blood Cells Mol Dis 70:13–42

    Article  CAS  PubMed  Google Scholar 

  • Gotoh T, Shishikura F, Snow J et al (1987) Two globin strains in the giant annelid extracellular haemoglobins. Biochem J 241(2):441–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halanych KM (2016) How our view of animal phylogeny was reshaped by molecular approaches: lessons learned. Org Divers Evol 16(2):319–328

    Article  Google Scholar 

  • Harrington J, Kobayashi S, Dorman S et al (2007) Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials. Artif Cells Blood Substit Biotechnol 35(1):53–67

    Article  CAS  Google Scholar 

  • Hendrickson WA, Klippenstein GL, Ward KB (1975) Tertiary structure of myohemerythrin at low resolution. Proc Natl Acad Sci USA 72:2160–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RW, Wyse GA, Anderson M (2016) Animal Physiology. Sinauer Associates, Inc. Publishers. Sunderland

    Google Scholar 

  • Holmes MA, Stenkamp RE (1991) Structures of met and azidomet hemerythrin at 1.66 A resolution. J Mol Biol 220:723–737

    Article  CAS  PubMed  Google Scholar 

  • Ilan E, David M, Daniel E (1981) Erythrocruorin from the crustacean Caenestheria inopinata. Quaternary structure and arrangement of subunits. Biochem 20(21): 6190–6194

    Google Scholar 

  • Ilan E, Weisselberg E, Daniel E (1982) Erythrocruorin from the water-flea Daphnia magna. Quaternary structure and arrangement of subunits. Biochem J 207(2): 297–303

    Google Scholar 

  • Jhiang SM, Riggs AF (1988) Exon-intron organization in genes of earthworm and vertebrate globins. Science 240(4850):334–336

    Article  CAS  PubMed  Google Scholar 

  • Jones L (2015) Recent advances in the molecular design of synthetic vaccines. Nature Chem 7(12):952–960

    Article  CAS  Google Scholar 

  • Keilin D, Hartree EF (1951) Relationship between haemoglobin and erythrocruorin. Nature 168(4268):266

    Article  CAS  PubMed  Google Scholar 

  • Klippenstein GL (1980) Structural aspects of hemerythrin and myohemerythrin. Am Zool 20(1):39–51

    Article  CAS  Google Scholar 

  • Klippenstein GL, Van Riper DA, Oosterom EA (1972) A comparative study of the oxygen transport proteins of Dendrostomum pyroides. Isolation and characterization of hemerythrins from the muscle, the vascular system, and the coelom. J Biol Chem 247(18): 5959–5963

    Google Scholar 

  • Knoll AH (1992) Biological and biogeochemical preludes to the ediacaran radiation. In: Lipps JH, Signor PW (eds) Origin and Early Evolution of the Metazoa. Plenum Press, New York

    Google Scholar 

  • Koch J, Lüdemann J, Spies R et al (2016) Unusual diversity of myoglobins genes in the lungfish. Mol Biol Evol 33(12):3033–3041

    Article  CAS  PubMed  Google Scholar 

  • Kocot KM, Struck TH, Merkel J et al (2017) Phylogenomics of Lophotrochozoa with consideration of systematic error. Syst Biol 66(2):256–282

    CAS  PubMed  Google Scholar 

  • Kurtz Jr DM (1992) Molecular structure/function relationships of hemerythrins. In: Mangum ChP (ed) Advances in Comparative & Environmental Physiology Vol 13—Blood and Tissue Oxygen Carriers. Springer-Verlag, Berlin, pp 151–171

    Google Scholar 

  • Lamy J, Green B, Toulmond A et al (1996) Giant hexagonal bilayer hemoglobins. Chem Rev 96(8):3113–3124

    Article  CAS  PubMed  Google Scholar 

  • Lamy J, Kuchumov A, Taveau J et al (2000) Reassembly of Lumbricus terrestris hemoglobin: A study by matrix-assisted laser desorption/ionization mass spectrometry and 3D reconstruction from frozen-hydrated specimens. J Mol Biol 298(4):633–647

    Article  CAS  PubMed  Google Scholar 

  • Lankester E (1868) Preliminary notice of some observations with the spectroscope on animal substances. J Anat Physiol 2(1):114–116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lecomte JT, Vuletich DA, Lesk AM (2005) Structural divergence and distant relationships in proteins: evolution of the globins. Curr Opin Struct Biol 15(3):290–301

    Article  CAS  PubMed  Google Scholar 

  • Li X, Tao J, Hu X et al (2015) A bacterial hemerythrin-like protein MsmHr inhibits the SigF-dependent hydrogen peroxide response in mycobacteria. Front Microbiol 5:1–11

    Google Scholar 

  • Liu J, Ou Q, Han J et al (2015) Lower Cambrian polychaete from China sheds light on early annelid evolution. Naturwissenschaften 102(5):1–7

    CAS  Google Scholar 

  • Liu Y, Li C, Su X et al (2013) Cloning and characterization of hemerythrin gene from sipuncula Phascolosoma esculenta. Genes Genomics 35(1):95–100

    Article  CAS  Google Scholar 

  • Mandler M, Gruber P, Mattner F et al (2015a). Method for treating a synucleiopathy. U.S. Patent 0093431 A1, April 2, 2015

    Google Scholar 

  • Mandler M, Zauner W, Mattner F et al (2015b). Method for treating a beta-Amyloidosis. U.S. Patent 0093432 A1, April 2, 2015

    Google Scholar 

  • Mangum CP (1992) Physiological function of the hemerythrins. In: Mangum CP (ed) Advances in Comparative & Environmental Physiology Vol 13—Blood and Tissue Oxygen Carriers. Springer-Verlag, Berlin, pp 173–192

    Google Scholar 

  • Manwell C (1960) Comparative physiology: blood pigments. Annu Rev Physiol 22(1):191–244

    Article  CAS  PubMed  Google Scholar 

  • Martín-Durán JM, De Mendoza A, Sebé-Pedrós A et al (2013) A broad genomic survey reveals multiple origins and frequent losses in the evolution of respiratory hemerythrins and hemocyanins. Genome Biol Evol 5:1435–1442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martins LJ, Hill CP, Ellis WR (1997) Structures of wild-type chloromet and L103N hydroxomet Themiste zostericola myohemerythrins at 1.8 Å resolution. Biochem 36(23): 7044–7049

    Google Scholar 

  • Mehta K, Chen W, Goldstein J et al (1991). The low density lipoprotein receptor in Xenopus laevis. I. Five domains that resemble the human receptor. J Biol Chem 266(16): 10406–10414

    Google Scholar 

  • Mills DB, Canfield DE (2014) Oxygen and animal evolution: Did a rise of atmospheric oxygen “trigger” the origin of animals? BioEssays 36(12):1145–1155

    Article  CAS  PubMed  Google Scholar 

  • Mills DB, Francis WR, Vargas S et al (2018) The last common ancestor of animals lacked the HIF pathway and respired in low-oxygen environments. Elife 7:e31176

    Article  PubMed  PubMed Central  Google Scholar 

  • Mills DB, Ward LM, Jones C et al (2014) Oxygen requirements of the earliest animals. PNAS 111(11):4168–4172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negrisolo E, Pallavicini A, Barbato R et al (2001) The evolution of extracellular hemoglobins of annelids, vestimentiferans, and pogonophorans. J Biol Chem 276(28):26391–26397

    Article  CAS  PubMed  Google Scholar 

  • Nursall JR (1959) Oxygen as a prerequisite to the origin of the Metazoa. Nature 183(4669):1170

    Article  Google Scholar 

  • Raff RA, Raff EC (1970) Respiratory mechanisms and the metazoan fossil record. Nature 228:1003–5

    Article  CAS  PubMed  Google Scholar 

  • Robitaille PML, Kurtz DM Jr (1988) Phosphorus-31 NMR probes of sipunculan erythrocytes containing the oxygen-carrying protein hemerythrin. Biochemistry 27(12):4458–4465

    Article  CAS  PubMed  Google Scholar 

  • Rouse G, Pleijel F (2001) Polychaetes. Oxford University Press, New York

    Google Scholar 

  • Rousselot M, Delpy E, Rochelle CD et al (2006) Arenicola marina extracellular hemoglobin: A new promising blood substitute. Biotechnol J 1(3):333–345

    Article  CAS  PubMed  Google Scholar 

  • Royer W (1992) Structures of red blood cell hemoglobins. In: Mangum CP (ed) Advances in Comparative & Environmental Physiology Vol 13—Blood and Tissue Oxygen Carriers. Springer-Verlag, Berlin, pp 87–116

    Google Scholar 

  • Royer W, Sharma H, Strand K et al (2006) Lumbricus erythrocruorin at 3.5 å resolution: architecture of a megadalton respiratory complex. Structure 14(7): 1167–1177

    Google Scholar 

  • Royer W, Zhu H, Gorr T et al (2005) Allosteric hemoglobin assembly: Diversity and similarity. J Biol Chem 280(30):27477–27480

    Article  CAS  PubMed  Google Scholar 

  • Sanders-Loehr J, Loehr TM (1979) Hemerythrin: a review of structural and spectroscopic properties. Adv Inorg Biochem 1:235–252

    Google Scholar 

  • Satake K, Yugi M, Kamo M et al (1990) Hemerythrin from Lingula unguis consists of two different subunits, alpha and beta. Protein Seq Data Anal 3:1–5

    CAS  PubMed  Google Scholar 

  • Schmidt-Rhaesa A (2007) The Evolution of Organs Systems. Oxford University Press, New York

    Book  Google Scholar 

  • Schumway SE (1979) The effects of body size, oxygen tension, and mode of life on the oxygen uptake rates of polychaetes. Comp Biochem Physiol A Physiol 62:273–278

    Article  Google Scholar 

  • Seo JK, Nam BH, Go HJ, Jeong M, Lee KY, Cho SM et al (2016) Hemerythrin-related antimicrobial peptide, msHemerycin, purified from the body of the Lugworm, Marphysa sanguinea. Fish Shellfish Immunol 57:49–59

    Article  CAS  PubMed  Google Scholar 

  • Shishikura F, Ochiai T, Yamanaka I (1997) Leech extracellular hemoglobin: two globin strains that are akin to vertebrate hemoglobin α and β chains. Zool Sci 14(6):923–930

    Article  CAS  Google Scholar 

  • Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreml S, Szeimies RM, Prantl L et al (2010) Oxygen in acute and chronic wound healing. Bri J Dermatol 163(2):257–268

    Article  CAS  Google Scholar 

  • Sieker LC, Stenkamp RE, Jensen LH (1982) The environment of the binuclear iron coordination complex in methemerythrin. In: Dunford HB, Dolphin D, Raymond KS, Sieker LC (eds) The Biological Chemistry of Iron. Springer, Dordrecht

    Google Scholar 

  • Sippl MJ (1984) On the origin of globins: structural relations between the globin exon products. Life Chem Rep Suppl 1:223–224

    Google Scholar 

  • Smith JL, Hendrickson WA, Addison AW (1983) Structure of trimeric hemerythrin. Nature 303:86–88

    Article  CAS  PubMed  Google Scholar 

  • Stenkamp RE, Sieker LC, Jensen LH (1984). Binuclear iron complexes in methemerythrin and azidomethemerythrin at 2.0-. ANG. Resolution. J Am Chem Soc 106(3): 618–622

    Google Scholar 

  • Sudhof T, Goldstein J, Brown M et al (1985) The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228(4701):815–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Riggs A (1993) Linker chain L1 of earthworm hemoglobin. Structure of gene and protein: homology with low density lipoprotein receptor. J Biol Chem 268(18): 13548–13555

    Google Scholar 

  • Suzuki T, Takagi T, Gotoh T (1990) Primary structure of two linker chains of the extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus. J Biol Chem 265(21):12168–12177

    CAS  PubMed  Google Scholar 

  • Tagagi T, Cox JA (1991) Primary structure of myohemerythrin fron the annelid Nereis diversicolor. FEBS Lett 285:25–27

    Article  Google Scholar 

  • Terwilliger NB (1992) Molecular structure of the extracellular heme proteins In: Mangum CP (ed) Advances in Comparative & Environmental Physiology Vol 13—Blood and Tissue Oxygen Carriers. Springer-Verlag, Berlin, pp 193–229

    Google Scholar 

  • Terwilliger NB (1998) Functional adaptations of oxygen-transport proteins. J Exp Biol 201:1085–1098

    CAS  PubMed  Google Scholar 

  • Terwilliger RC, Terwilliger NB, Schabtach E (1976) Comparison of chlorocruorin and annelid hemoglobin quaternary structures. Comp Biochem Physiol A 55(1):51–55

    Article  CAS  PubMed  Google Scholar 

  • Uchida T, Yano H, Satake K et al (1990) The amino acid sequence of hemerythrin from Siphonosoma cumanense. Protein Seq Data Anal 3:141–147

    CAS  PubMed  Google Scholar 

  • Vanin S, Negrisolo E, Bailly X et al (2006) Molecular evolution and phylogeny of sipunculan hemerythrins. J Mol Evol 62:32–41

    Article  CAS  PubMed  Google Scholar 

  • Vergote D, Sautière PE, Vandenbulcke F et al (2004) Up-regulation of neurohemerythrin expression in the central nervous system of the medicinal leech, Hirudo medicinalis, following septic injury. J Biol Chem 279(42):43828–37

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S (1985) The structure of invertebrate extracellular hemoglobins (erythrocruorins and chlorocruorins). Comp Biochem Physiol B 82(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S (2004) The stoichiometry of the four linker subunits of Lumbricus terrestris hemoglobin suggests an asymmetric distribution. Micron 35(1–2):127–129

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S, Hoogewijs D, Bailly X et al (2006) A phylogenomic profile of globins. BMC Evol Biol 6(1):31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinogradov S, Hoogewijs D, Bailly X et al (2007) A model of globin evolution. Gene 398(1):132–142

    Article  CAS  PubMed  Google Scholar 

  • Vinogradov S, Walz D, Pohajdak B et al (1993) Adventitious variability – the amino-acid sequences of nonvertebrate globins. Comp Biochem Physiol B 106(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Volbeda A, Hol WG (1989) Pseudo 2-fold symmetry in the copper-binding domain of arthropodan haemocyanins: possible implications for the evolution of oxygen transport proteins. J Mol Biol 206(3):531–546

    Article  CAS  PubMed  Google Scholar 

  • Ward KB, Hendrickson WA, Klippenstein GL (1975) Quaternary and tertiary structure of hemerythrin. Nature 257:818–821

    Article  CAS  PubMed  Google Scholar 

  • Weber R, Vinogradov S (2001) Nonvertebrate hemoglobins: functions and molecular adaptations. Physiol Rev 81(2):569–628

    Article  CAS  PubMed  Google Scholar 

  • Weigert A, Bleidorn C (2016) Current status of annelid phylogeny. Org Divers Evol 16(2):345–362

    Article  Google Scholar 

  • Weigert A, Helm C, Meyer M et al (2014) Illuminating the base of the annelid tree using transcriptomics. Mol Biol Evol 31(6):1391–1401

    Article  CAS  PubMed  Google Scholar 

  • Whelan NV, Kocot KM, Moroz LL et al (2015) Error, signal, and the placement of Ctenophora sister to all other animals. PNAS 112(18):5773–5778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins RG, Harrington PC (1983) The chemistry of hemerythrin. Adv Inorg Biochem 5:51–85

    CAS  PubMed  Google Scholar 

  • Yuasa H, Green B, Takagi T et al (1996) Electrospray ionization mass spectrometric composition of the 400 kDa hemoglobin from the pogonophoran Oligobrachia mashikoi and the primary structures of three major globin chains. Biochim Biophys Acta Prot Struct Mol Enzym 1296(2):235–244

    Article  Google Scholar 

  • Zal F (2015) Use of haemoglobin of annelids for treating cancer. U.S. Patent Application No. 14/768,303. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Zal F (2017) Use of annelid haemoglobin for maintaining stem cells in the undifferentiated state. U.S. Patent No. 9,663,761. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Zal F, Rousselot M (2014) Extracellular hemoglobins from annelids, and their potential use in biotechnology. In: La Barre S, Kornprobst J-M (eds) Outstanding Marine Molecules: Chemistry, Biology, Analysis. Wiley-VCH, Weinheim, pp 361–376

    Google Scholar 

Download references

Acknowledgements

We should like to thank Fernando Avila Queiroz (Federal University of Rio de Janeiro) for valuable help with the figures and Flavia A. Belato (University of Sao Paulo) for critically reading the text. A Fellowship to EMC-P was provided by FAPESP (Sao Paulo Research Foundation, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa M. Costa-Paiva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa-Paiva, E.M., Coates, C.J. (2020). Recent Insights into the Diversity and Evolution of Invertebrate Hemerythrins and Extracellular Globins. In: Hoeger, U., Harris, J. (eds) Vertebrate and Invertebrate Respiratory Proteins, Lipoproteins and other Body Fluid Proteins. Subcellular Biochemistry, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-030-41769-7_10

Download citation

Publish with us

Policies and ethics