Skip to main content

An Improved Coarse-Grained Model to Accurately Predict Red Blood Cell Morphology and Deformability

  • Conference paper
  • First Online:
Computational Biomechanics for Medicine (MICCAI 2019, MICCAI 2018)

Abstract

Accurate modelling of red blood cells (RBCs) has greater potential over experiments, as it can be more robust and significantly cheaper than equivalent experimental procedures to investigate the mechanical properties, rheology and dynamics of RBCs. The recent advances in numerical modelling techniques for RBC studies are reviewed in this study, and in particular, the discrete models for a triangulated surface to represent the in-plane stretching energy and out-of-plane bending energy of the RBC membrane are discussed. In addition, an improved RBC membrane model is presented based on coarse-grained (CG) technique that accurately and efficiently predicts the morphology and deformability of a RBC. The CG-RBC membrane model predicts the minimum energy configuration of the RBC from the competition between the in-plane stretching energy of the cytoskeleton and the out-of-plane bending energy of the lipid-bilayer under the given reference states of the cell surface area and volume. A quantitative evaluation of several cellular measurements including length, thickness and shape factor, is presented between the CG-RBC membrane model and three-dimensional (3D) confocal microscopy imaging generated RBC shapes at equivalent reference states. The CG-RBC membrane model predicts agreeable deformation characteristics of a healthy RBC with the analogous experimental observations corresponding to optical tweezers stretching deformations. The numerical approach presented here forms the foundation for investigations into RBC morphology and deformability under diverse shape-transforming scenarios, in vitro RBC storage, microvascular circulation and flow through microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ADE:

Area-difference-elasticity

AFM:

Atomic force microscopy

BCM:

Bilayer-coupling model

BIM:

Boundary integral method

CG:

Coarse-graining

CGMD:

Coarse-grained molecular dynamics

DPD:

Dissipative particle dynamics

FEM:

Finite element method

HE:

Hereditary elliptocytosis

HPC:

High performance computing

HS:

Hereditary spherocytosis

IBM:

Immersed boundary method

MD:

Molecular dynamics

QUT:

Queensland University of Technology

RBC:

Red blood cell

SAGM:

Saline-adenine-glucose-mannitol

SCM:

Spontaneous curvature model

SEM:

Scanning electron microscopy

SF:

Shape factor

SP:

Spring-particle

SPH:

Smoothed particle hydrodynamics

TEM:

Transmission electron microscopy

WLC:

Worm-like-chain

Bibliography

  1. M. Dao, J. Li, S. Suresh, Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater. Sci. Eng. C 26(8), 1232–1244 (2006)

    Google Scholar 

  2. M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51(11), 2259–2280 (2003)

    ADS  Google Scholar 

  3. D. Kuzman, S. Svetina, R.E. Waugh, B. Žekš, Elastic properties of the red blood cell membrane that determine echinocyte deformability. Eur. Biophys. J. 33(1) (2004)

    Google Scholar 

  4. Y. Kim, K. Kim, Y.K. Park, Measurement techniques for red blood cell deformability: Recent advances. INTECH, 167–194 (2012)

    Google Scholar 

  5. H.-Y. Chang, X. Li, H. Li, G.E. Karniadakis, MD/DPD multiscale framework for predicting morphology and stresses of red blood cells in health and disease. PLoS Comput. Biol. 12(10) (2016). Art. no. 1005173

    Google Scholar 

  6. X. Li, M. Dao, G. Lykotrafitis, G.E. Karniadakis, Biomechanics and biorheology of red blood cells in sickle cell anemia. J. Biomech. 50, 34–41 (2016)

    Google Scholar 

  7. H. Li, L. Lu, X. Li, P.A. Buffet, M. Dao, G.E. Karniadakis, S. Suresh, Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proc. Natl. Acad. Sci. U. S. A. 115(38), 9574–9579 (2018)

    Google Scholar 

  8. Y. Wang, G. You, P. Chen, J. Li, G. Chen, B. Wang, P. Li, D. Han, H. Zhou, L. Zhao, The mechanical properties of stored red blood cells measured by a convenient microfluidic approach combining with mathematic model. Biomicrofluidics 10(2) (2016). Art. no. 024104

    Google Scholar 

  9. E. Kozlova, A. Chernysh, V. Moroz, V. Sergunova, O. Gudkova, E. Manchenko, Morphology, membrane nanostructure and stiffness for quality assessment of packed red blood cells. Sci. Rep. 7(1) (2017). Art. no. 7846

    Google Scholar 

  10. K. Matthews, M.-E. Myrand-Lapierre, R.R. Ang, S.P. Duffy, M.D. Scott, H. Ma, Microfluidic deformability analysis of the red cell storage lesion. J. Biomech. 48(15), 4065–4072 (2015)

    Google Scholar 

  11. H. Song, Y. Liu, B. Zhang, K. Tian, P. Zhu, H. Lu, Q. Tang, Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers. Biomed. Opt. Express 8(1), 384–394 (2017)

    Google Scholar 

  12. Y. Zheng, J. Chen, T. Cui, N. Shehata, C. Wang, Y. Sun, Characterization of red blood cell deformability change during blood storage. Lab Chip 14(3), 577–583 (2014)

    Google Scholar 

  13. X. Li, H. Li, H.-Y. Chang, G. Lykotrafitis, G.E. Karniadakis, Computational biomechanics of human red blood cells in hematological disorders. J. Biomech. Eng. 139(2) (2017). Art. no. 021008

    Google Scholar 

  14. P. Wong, A basis of echinocytosis and stomatocytosis in the disc–sphere transformations of the erythrocyte. J. Theor. Biol. 196(3), 343–361 (1999)

    Google Scholar 

  15. Y. Li, C. Wen, H. Xie, A. Ye, Y. Yin, Mechanical property analysis of stored red blood cell using optical tweezers. Colloids Surf. B: Biointerfaces 70(2), 169–173 (2009)

    Google Scholar 

  16. E. Pretorius, The adaptability of red blood cells. Cardiovasc. Diabetol. 12 (2013). Art. no. 63

    Google Scholar 

  17. A.V. Buys, M.-J.V. Rooy, P. Soma, D.V. Papendorp, B. Lipinski, E. Pretorius, Changes in red blood cell membrane structure in type 2 diabetes: A scanning electron and atomic force microscopy study. Cardiovasc. Diabetol. 12 (2013). Art. no. 25

    Google Scholar 

  18. G.H.W. Lim, M. Wortis, R. Mukhopadhyay, Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer– Couple hypothesis from membrane mechanics. Proc. Natl. Acad. Sci. U. S. A. 99(26), 16766–16769 (2002)

    ADS  Google Scholar 

  19. N. Mohandas, P.G. Gallagher, Red cell membrane: Past, present, and future. Blood 112(10), 3939–3948 (2008)

    Google Scholar 

  20. X. Li, P.M. Vlahovska, G.E. Karniadakis, Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 9(1), 28–37 (2013)

    ADS  Google Scholar 

  21. R. Mukhopadhyay, G. Lim, M. Wortis, Echinocyte shapes: Bending, stretching, and shear determine spicule shape and spacing. Biophys. J. 82(4), 1756–1772 (2002)

    Google Scholar 

  22. X. Li, Z. Peng, H. Lei, M. Dao, G.E. Karniadakis, Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci. 372 (2014). Art. no. 20130389

    Google Scholar 

  23. G. Tomaiuolo, Biomechanical properties of red blood cells in health and disease towards microfluidics, in Biomicrofluidics. vol 8(5), (2014), Art. no. 051501

    Google Scholar 

  24. J. Li, G. Lykotrafitis, M. Dao, S. Suresh, Cytoskeletal dynamics of human erythrocyte. Proc. Natl. Acad. Sci. U. S. A. 104(12), 4937–4942 (2007)

    ADS  Google Scholar 

  25. T. Auth, S.A. Safran, N.S. Gov, Fluctuations of coupled fluid and solid membranes with application to red blood cells. Phys. Rev. E 76(5) (2007). Art. no. 051910

    Google Scholar 

  26. M.P. Sheetz, S.J. Singer, Biological membranes as bilayer couples: Molecular mechanisms of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. U. S. A. 71(11), 4457–4461 (1974)

    ADS  Google Scholar 

  27. G. Pages, T.W. Yau, P.W. Kuchel, Erythrocyte shape reversion from echinocytes to discocytes: Kinetics via fast-measurement NMR diffusion-diffraction. Magn. Reson. Med. 64(3), 645–652 (2010)

    Google Scholar 

  28. Z. Peng, R.J. Asaro, Q. Zhu, Multiscale simulation of erythrocyte membranes. Phys. Rev. E 81(3) (2010). Art. no. 031904

    Google Scholar 

  29. H. Li, G. Lykotrafitis, Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane. Biophys. J. 102(1), 75–84 (2012)

    ADS  Google Scholar 

  30. Z. Peng, R.J. Asaro, Q. Zhu, Multiscale modelling of erythrocytes in stokes flow. J. Fluid Mech. 686, 299–337 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  31. D.A. Fedosov, M. Dao, G.E. Karniadakis, S. Suresh, Computational biorheology of human blood flow in health and disease. Ann. Biomed. Eng. 42(2), 368–387 (2014)

    Google Scholar 

  32. H. Li, G. Lykotrafitis, Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophys. J. 107(3), 642–653 (2014)

    ADS  Google Scholar 

  33. H. Li, G. Lykotrafitis, Vesiculation of healthy and defective red blood cells. Phys. Rev. E 92(1) (2015). Art. no. 012715

    Google Scholar 

  34. S. Salehyar, Q. Zhu, Effects of stiffness and volume on the transit time of an erythrocyte through a slit. Biomech. Model. Mechanobiol. 16(3), 921–931 (2016)

    Google Scholar 

  35. M.M. Gedde, D.K. Davis, W.H. Huestis, Cytoplasmic pH and human erythrocyte shape. Biophys. J. 72(3), 1234–1246 (1997)

    ADS  Google Scholar 

  36. R. Glaser, The shape of red blood cells as a function of membrane potential and temperature. J. Membr. Biol. 51, 217–228 (1979)

    Google Scholar 

  37. M. Gros, S. Vrhovec, M. Brumen, S. Svetina, B. Zeks, Low pH induced shape changes and vesiculation of human erythrocytes. Gen. Physiol. Biophys. 15(2), 145–163 (1996)

    Google Scholar 

  38. F. Xing, S. Xun, Y. Zhu, F. Hu, I. Drevenšek-Olenik, X. Zhang, L. Pan, J. Xu, Microfluidic assemblies designed for assessment of drug effects on deformability of human erythrocytes. Biochem. Biophys. Res. Commun. 512(2), 303–309 (2019)

    Google Scholar 

  39. T. Avsievich, A. Popov, A. Bykov, I. Meglinski, Mutual interaction of red blood cells influenced by nanoparticles. Sci. Rep. 9(1) (2019). Art. no. 5147

    Google Scholar 

  40. Y.J. Choi, H. Huh, G.E. Bae, E.J. Ko, S.-u. Choi, S.-H. Park, C.H. Lim, H.W. Shin, H.-w. Lee, S.Z. Yoon, Effect of varying external pneumatic pressure on hemolysis and red blood cell elongation index in fresh and aged blood: Randomized laboratory research. Medicine 97(28) (2018). Art. no. 11460

    Google Scholar 

  41. I.I. Jeican, H. Matei, A. Istrate, E. Mironescu, S. Balici, Changes observed in erythrocyte cells exposed to an alternating current. Clujul Medical 90(2), 154–160 (2017)

    Google Scholar 

  42. M.M. Gedde, W.H. Huestis, Membrane potential and human erythrocyte shape. Biophys. J. 72(3), 1220–1233 (1997)

    ADS  Google Scholar 

  43. M.M. Gedde, E. Yang, W.H. Huestis, Shape response of human erythrocytes to altered cell pH. Blood 86(4), 1595–1599 (1995)

    Google Scholar 

  44. M.M. Gedde, E. Yang, W.H. Huestis, Resolution of the paradox of red cell shape changes in low and high pH. Biochim. Biophys. Acta Biomembr. 1417(2), 246–253 (1999)

    Google Scholar 

  45. K.D. Tachev, K.D. Danov, P.A. Kralchevsky, On the mechanism of stomatocyte-echinocyte transformations of red blood cells: Experiment and theoretical model. Colloids Surf. B: Biointerfaces 34(2), 123–140 (2004)

    Google Scholar 

  46. S.V. Rudenko, M.K. Saeid, Reconstruction of erythrocyte shape during modified morphological response. Biochem. Mosc. 75(8), 1025–1031 (2010)

    Google Scholar 

  47. S.V. Rudenko, Characterization of morphological response of red cells in a sucrose solution. Blood Cell Mol. Dis. 42(3), 252–261 (2009)

    Google Scholar 

  48. S.V. Rudenko, Erythrocyte morphological states, phases, transitions and trajectories. Biochim. Biophys. Acta Biomembr. 1798(9), 1767–1778 (2010)

    Google Scholar 

  49. S.V. Rudenko, Low concentration of extracellular hemoglobin affects shape of RBC in low ion strength sucrose solution. Bioelectrochemistry 75(1), 19–25 (2009)

    Google Scholar 

  50. B. Deuticke, Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim. Biophys. Acta Biomembr. 163(4), 494–500 (1968)

    Google Scholar 

  51. M. Rasia, A. Bollini, Red blood cell shape as a function of medium’s ionic strength and pH. Biochim. Biophys. Acta Biomembr. 1372(2), 198–204 (1998)

    Google Scholar 

  52. M. Bessis, Red cell shapes. An illustrated classification and its rationale, in Red Cell Shape. vol 12(6), (Springer, Berlin/Heidelberg, 1973), pp. 721–746

    Google Scholar 

  53. G. Brecher, M. Bessis, Present status of spiculed red cells and their relationship to the discocyte-echinocyte transformation: A critical review. Blood 40(3), 333–344 (1972)

    Google Scholar 

  54. I. Mustafa, A. Al Marwani, K.M. Nasr, N.A. Kano, T. Hadwan, Time dependent assessment of morphological changes: Leukodepleted packed red blood cells stored in SAGM. Biomed Res. Int. (2016). Art. no. 4529434

    Google Scholar 

  55. R.E. Waugh, M. Narla, C.W. Jackson, T.J. Mueller, T. Suzuki, G.L. Dale, Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age. Blood 79(5), 1351–1358 (1992)

    Google Scholar 

  56. D. Kuzman, T. Žnidarčič, M. Gros, S. Vrhovec, S. Svetina, B. Žekš, Effect of pH on red blood cell deformability. Eur. J. Phys. 440(1), 193–194 (2000)

    Google Scholar 

  57. K. Jaferzadeh, I. Moon, Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy. J. Biomed. Optics 20(11) (2015). Art. no. 111218

    Google Scholar 

  58. S. Piomelli, C. Seaman, Mechanism of red blood cell aging: Relationship of cell density and cell age. Am. J. Hematol. 42(1), 46–52 (1993)

    Google Scholar 

  59. D. Yoon, D. You, Continuum modeling of deformation and aggregation of red blood cells. J. Biomech. 49(11), 2267–2279 (2016)

    Google Scholar 

  60. S.K. Boey, D.H. Boal, D.E. Discher, Simulations of the erythrocyte cytoskeleton at large deformation: I. microscopic models. Biophys. J. 75(3), 1573–1583 (1998)

    Google Scholar 

  61. D.H. Boal, Computer simulation of a model network for the erythrocyte cytoskeleton. Biophys. J. 67(2), 521–529 (1994)

    ADS  Google Scholar 

  62. D.A. Fedosov, B. Caswell, G.E. Karniadakis, Systematic coarse-graining of spectrin-level red blood cell models. Comput. Methods Appl. Mech. Eng. 199(29–32), 1937–1948 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  63. D.A. Fedosov, B. Caswell, G.E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys. J. 98(10), 2215–2225 (2010)

    ADS  Google Scholar 

  64. S. Suresh, J. Spatz, J.P. Mills, A. Micoulet, M. Dao, C.T. Lim, M. Beil, T. Seufferlein, Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 1(1), 15–30 (2005)

    Google Scholar 

  65. W. Groner, N. Mohandas, M. Bessis, New optical technique for measuring erythrocyte deformability with the ektacytometer. Clin. Chem. 26(10), 1435–1442 (1980)

    Google Scholar 

  66. X.Y. Chen, Y.X. Huang, W.J. Liu, Z.J. Yuan, Membrane surface charge and morphological and mechanical properties of young and old erythrocytes. Curr. Appl. Phys. 7, 94–96 (2007)

    ADS  Google Scholar 

  67. R.T. Card, N. Mohandas, P.L. Mollison, Relationship of post-transfusion viability to deformability of stored red-cells. Br. J. Haematol. 53(2), 237–240 (1983)

    Google Scholar 

  68. L. Van De Watering, More data on red blood cell storage could clarify confusing clinical outcomes. Transfusion 54(3), 501–502 (2014)

    Google Scholar 

  69. R.R. Huruta, M.L. Barjas-Castro, S.T.O. Saad, F.F. Costa, A. Fontes, L.C. Barbosa, C.L. Cesar, Mechanical properties of stored red blood cells using optical tweezers. Blood 92(8), 2975–2977 (1998)

    Google Scholar 

  70. B. Bhaduri, M. Kandel, C. Brugnara, K. Tangella, G. Popescu, Optical assay of erythrocyte function in banked blood. Sci. Rep. 4 (2014). Art. no. 6211

    Google Scholar 

  71. S. Ramirez-Arcos, D.C. Marks, J.P. Acker, W.P. Sheffield, Quality and safety of blood products. J. Blood Transfus. 2016, 1–2 (2016)

    Google Scholar 

  72. Y. Park, C.A. Best, K. Badizadegan, R.R. Dasari, M.S. Feld, T. Kuriabova, M.L. Henle, A.J. Levine, G. Popescu, Measurement of red blood cell mechanics during morphological changes. Proc. Natl. Acad. Sci. U. S. A. 107(15), 6731–6736 (2010)

    ADS  Google Scholar 

  73. D.C. Betticher, W.H. Reinhart, J. Geiser, Effect of RBC shape and deformability on pulmonary O2 diffusing capacity and resistance to flow in rabbit lungs. J. Appl. Physiol. 78(3), 778–783 (1995)

    Google Scholar 

  74. C. Monzel, K. Sengupta, Measuring shape fluctuations in biological membranes. J. Phys. D Appl.Phys. 49(24) (2016). Art. no. 243002

    Google Scholar 

  75. D. Bento, R. Rodrigues, V. Faustino, D. Pinho, C. Fernandes, A. Pereira, V. Garcia, J. Miranda, R. Lima, Deformation of red blood cells, air bubbles, and droplets in microfluidic devices: Flow visualizations and measurements. Micromachines 9(4), 3–18 (2018). Art. no. 151

    Google Scholar 

  76. M. Musielak, Red blood cell-deformability measurement: Review of techniques. Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009)

    Google Scholar 

  77. X. Li, H. Lu, Z. Peng, Continuum- and particle-based modeling of human red blood cells, in Handbook of Materials Modeling: Applications: Current and Emerging Materials, ed. by W. Andreoni, S. Yip, (Springer International Publishing, 2018)

    Google Scholar 

  78. A.K. Dasanna, U.S. Schwarz, G. Gompper, D.A. Fedosov, Multiscale modeling of malaria-infected red blood cells, in Handbook of Materials Modeling: Applications: Current and Emerging Materials, ed. by W. Andreoni, S. Yip, (Springer International Publishing, 2018)

    Google Scholar 

  79. M. Ju, S.S. Ye, B. Namgung, S. Cho, H.T. Low, H.L. Leo, S. Kim, A review of numerical methods for red blood cell flow simulation. Comput. Methods Biomech. Biomed. Engin. 18(2), 130–140 (2015)

    Google Scholar 

  80. T. Ye, N. Phan-Thien, C.T. Lim, Particle-based simulations of red blood cells - a review. J. Biomech. 49(11), 2255–2266 (2016)

    Google Scholar 

  81. A. Yazdani, X. Li, G.E. Karniadakis, Dynamic and rheological properties of soft biological cell suspensions. Rheol. Acta 55(6), 433–449 (2016)

    Google Scholar 

  82. Y. Imai, T. Omori, Y. Shimogonya, T. Yamaguchi, T. Ishikawa, Numerical methods for simulating blood flow at macro, micro, and multi scales. J. Biomech. 49(11), 2221–2228 (2016)

    Google Scholar 

  83. G. Gompper, D.A. Fedosov, Modeling microcirculatory blood flow: Current state and future perspectives. Wiley Interdiscip. Rev. Syst. Biol. Med. 8(2), 157–168 (2016)

    Google Scholar 

  84. D.A. Fedosov, H. Noguchi, G. Gompper, Multiscale modeling of blood flow: From single cells to blood rheology. Biomech. Model. Mechanobiol. 13(2), 239–258 (2014)

    Google Scholar 

  85. J.B. Freund, in Annual Review of Fluid Mechanics, ed. by S. H. Davis, P. Moin, Numerical simulation of flowing blood cells, vol 46 (Annual Review of Fluid Mechanics, 2014), pp. 67–95

    Google Scholar 

  86. R.C.H. Van Der Burgt, A Cross-Slot Microrheometer to Probe Red Blood Cell Dynamics (Technische Universiteit Eindhoven, 2016)

    Google Scholar 

  87. C.T. Lim, M. Dao, S. Suresh, C.H. Sow, K.T. Chew, Large deformation of living cells using laser traps. Acta Mater. 52(7), 1837–1845 (2004)

    Google Scholar 

  88. S. Barns, M.A. Balanant, E. Sauret, R. Flower, S. Saha, Y. Gu, Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method. Biomed. Eng. Online 16(1) (2017). Art. no. 140

    Google Scholar 

  89. G. Marcelli, K.H. Parker, C.P. Winlove, Thermal fluctuations of red blood cell membrane via a constant-area particle-dynamics model. Biophys. J. 89(4), 2473–2480 (2005)

    Google Scholar 

  90. I.V. Pivkin, G.E. Karniadakis, Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101(11) (2008). Art. no. 118105

    Google Scholar 

  91. K.-i. Tsubota, Short note on the bending models for a membrane in capsule mechanics: Comparison between continuum and discrete models. J. Comput. Phys. 277, 320–328 (2014)

    ADS  MATH  Google Scholar 

  92. Y.-H. Tang, L. Lu, H. Li, C. Evangelinos, L. Grinberg, V. Sachdeva, G.E. Karniadakis, OpenRBC: A fast simulator of red blood cells at protein resolution. Biophys. J. 112(10), 2030–2037 (2017)

    ADS  Google Scholar 

  93. A.L. Blumers, Y.-H. Tang, Z. Li, X. Li, G.E. Karniadakis, GPU-accelerated red blood cells simulations with transport dissipative particle dynamics. Comput. Phys. Commun. 217, 171–179 (2017)

    ADS  Google Scholar 

  94. Z. Peng, X. Li, I.V. Pivkin, M. Dao, G.E. Karniadakis, S. Suresh, Lipid bilayer and cytoskeletal interactions in a red blood cell. Proc. Natl. Acad. Sci. U. S. A. 110(33), 13356–13361 (2013)

    ADS  Google Scholar 

  95. D.A. Fedosov, B. Caswell, G.E. Karniadakis, Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 1–20, (2009), pp. 4266–4269

    Google Scholar 

  96. J.P. Hale, G. Marcelli, K.H. Parker, C.P. Winlove, P.G. Petrov, Red blood cell thermal fluctuations: Comparison between experiment and molecular dynamics simulations. Soft Matter 5(19), 3603–3606 (2009)

    ADS  Google Scholar 

  97. L.-G. Jiang, H.-A. Wu, X.-Z. Zhou, X.-X. Wang, Coarse-grained molecular dynamics simulation of a red blood cell. Chin. Phys. Lett. 27(2) (2010). Art. no. 028704

    Google Scholar 

  98. J. Lyu, P.G. Chen, G. Boedec, M. Leonetti, M. Jaeger, Hybrid continuum–coarse-grained modeling of erythrocytes. Comptes Rendus Mécanique 346(6), 439–448 (2018)

    ADS  Google Scholar 

  99. P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26(1), 61–81 (1970)

    Google Scholar 

  100. S. Svetina, B. Žekš, Membrane bending energy and shape determination of phospholipid vesicles and red blood cells. Eur. Biophys. J. 17(2), 101–111 (1989)

    Google Scholar 

  101. H.N. Polwaththe-Gallage, S.C. Saha, E. Sauret, R. Flower, W. Senadeera, Y. Gu, SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries. Biomed. Eng. Online 15, 354–370 (2016)

    Google Scholar 

  102. K.-i. Tsubota, S. Wada, Elastic force of red blood cell membrane during tank-treading motion: Consideration of the membrane’s natural state. Int. J. Mech. Sci. 52(2), 356–364 (2010)

    Google Scholar 

  103. J. Li, M. Dao, C.T. Lim, S. Suresh, Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88(5), 3707–3719 (2005)

    Google Scholar 

  104. A.S. Ademiloye, L.W. Zhang, K.M. Liew, Atomistic–continuum model for probing the biomechanical properties of human erythrocyte membrane under extreme conditions. Comput. Methods Appl. Mech. Eng. 325, 22–36 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  105. G. Závodszky, B. van Rooij, V. Azizi, A. Hoekstra, Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Front. Physiol. 8 (2017). Art no. 563

    Google Scholar 

  106. N.M. Geekiyanage, M.A. Balanant, E. Sauret, S. Saha, R. Flower, C.T. Lim, Y. Gu, A coarse-grained red blood cell membrane model to study stomatocyte-discocyte-echinocyte morphologies. PLoS ONE 14(4) (2019). Art. no. 0215447

    Google Scholar 

  107. H.-Y. Chang, X. Li, G.E. Karniadakis, Modeling of biomechanics and biorheology of red blood cells in type 2 diabetes mellitus. Biophys. J. 113(2), 481–490 (2017)

    ADS  Google Scholar 

  108. H. Delingette, Triangular springs for modeling nonlinear membranes. IEEE Trans. Vis. Comput. Graph. 14(2), 329–341 (2008)

    Google Scholar 

  109. L. Miao, U. Seifert, M. Wortis, H.-G. Döbereiner, Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. Phys. Rev. E 49(6), 5389–5407 (1994)

    ADS  Google Scholar 

  110. U. Seifert, K. Berndl, R. Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models. Phys. Rev. A 44(2), 1182–1202 (1991)

    ADS  Google Scholar 

  111. W. Helfrich, Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles. Z. Naturforsch. 29(C), 510–515 (1974)

    Google Scholar 

  112. W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. 28(11), 693–703 (1973)

    Google Scholar 

  113. S. Svetina, A. Ottova-Leitmannova, R. Glaser, Membrane bending energy in relation to bilayer couples concept of red blood cell shape transformations. J. Theor. Biol. 94(1), 13–23 (1982)

    Google Scholar 

  114. V. Heinrich, S. Svetina, B. Žekš, Nonaxisymmetric vesicle shapes in a generalized bilayer-couple model and the transition between oblate and prolate axisymmetric shapes. Phys. Rev. E 48(4), 3112–3123 (1993)

    ADS  Google Scholar 

  115. K. Khairy, J. Foo, J. Howard, Shapes of red blood cells: Comparison of 3D confocal images with the bilayer-couple model. Cell. Mol. Bioeng. 1(2), 173–181 (2008)

    Google Scholar 

  116. X. Li, I.V. Pivkin, H. Liang, G.E. Karniadakis, Shape transformations of membrane vesicles from amphiphilic triblock copolymers: A dissipative particle dynamics simulation study. Macromolecules 42(8), 3195–3200 (2009)

    ADS  Google Scholar 

  117. G.H.W. Lim, M. Wortis, R. Mukhopadhyay, Red blood cell shapes and shape transformations: Newtonian mechanics of a composite membrane: Sections 2.5–2.8, in Soft Matter, (2009), pp. 83–250

    Google Scholar 

  118. S. Svetina, Vesicle budding and the origin of cellular life. ChemPhysChem 10(16), 2769–2776 (2009)

    Google Scholar 

  119. K. Khairy, J. Howard, Minimum-energy vesicle and cell shapes calculated using spherical harmonics parameterization. Soft Matter 7(5), 2138–2143 (2011)

    ADS  Google Scholar 

  120. M. Chen, F.J. Boyle, An enhanced spring-particle model for red blood cell structural mechanics: Application to the stomatocyte–discocyte–echinocyte transformation. J. Biomech. Eng. 139(12) (2017). Art no. 121009

    Google Scholar 

  121. Z.-X. Tong, X. Chen, Y.-L. He, X.-B. Liao, Coarse-grained area-difference-elasticity membrane model coupled with IB–LB method for simulation of red blood cell morphology. Physica A: Stat. Mech. Appl. 509, 1183–1194 (2018)

    ADS  MathSciNet  Google Scholar 

  122. G.H.W. Lim, A Numerical Study of Morphologies and Morphological Transformations of Human Erythrocyte Based on Membrane Mechanics, Doctor of Philosophy, Department of Physics, Simon Fraser University, (2003)

    Google Scholar 

  123. J.P. Mills, L. Qie, M. Dao, C.T. Lim, S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1(3), 169–180 (2004)

    Google Scholar 

  124. H.N. Polwaththe-Gallage, S.C. Saha, Y. Gu, Deformation of a Three-Dimensional Red Blood Cell in a Stenosed Microcapillary, Presented at the 8th Australasian Congress on Applied Mechanics (ACAM-8), Melbourne, Australia, (2014)

    Google Scholar 

  125. J.N. Israelachvili, Intermolecular and Surface Forces, 3rd edn. (Elsevier, 2011)

    Google Scholar 

  126. A. Iglič, V. Kralj-Iglič, H. Hägerstrand, Amphiphile induced echinocyte-spheroechinoeyte transformation of red blood cell shape. Eur. Biophys. J. 27(4), 335–339 (1998)

    Google Scholar 

  127. S. Etcheverry, M.J. Gallardo, P. Solano, M. Suwalsky, O.N. Mesquita, C. Saavedra, Real-time study of shape and thermal fluctuations in the echinocyte transformation of human erythrocytes using defocusing microscopy. J. Biomed. Optics 17(10) (2012). Art no. 106013

    Google Scholar 

  128. M. Nakamura, S. Bessho, S. Wada, Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis. Int. J. Numer. Methods Biomed. Eng. 30(1), 42–54 (2014)

    MathSciNet  Google Scholar 

  129. M. A. Balanant, Experimental Studies of Red Blood Cells during Storage, Doctor of Philosophy, Science and Engineering Faculty, Queensland University of Technology, (2018)

    Google Scholar 

  130. J. Rodriguez, T. Edeskär, S. Knutsson, Particle shape quantities and measurement techniques: A review. Electron. J. Geotech. Eng. 18(A), 169–198 (2013)

    Google Scholar 

  131. S. Hénon, G. Lenormand, A. Richert, F. Gallet, A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76(2), 1145–1151 (1999)

    Google Scholar 

  132. J. Czerwinska, S.M. Wolf, H. Mohammadi, S. Jeney, Red blood cell aging during storage, studied using optical tweezers experiment. Cell. Mol. Bioeng. 8(2), 258–266 (2015)

    Google Scholar 

  133. Y. Liang, Y. Xiang, J. Lamstein, A. Bezryadina, Z. Chen, Cell deformation and assessment with tunable “tug-of-war” optical tweezers, in Conference on Lasers and Electro-Optics, San Jose, California, 2019, Optical Society of America

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilie Sauret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geekiyanage, N.M., Flower, R., Gu, Y.T., Sauret, E. (2020). An Improved Coarse-Grained Model to Accurately Predict Red Blood Cell Morphology and Deformability. In: Miller, K., Wittek, A., Joldes, G., Nash, M., Nielsen, P. (eds) Computational Biomechanics for Medicine. MICCAI MICCAI 2019 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-42428-2_5

Download citation

Publish with us

Policies and ethics