Skip to main content

Compression Behavior of Low-Pressure Cast AMC Syntactic Foams with High Porosity

  • Conference paper
  • First Online:
Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019)

Abstract

This work presents a method for the manufacturing of closed-cell aluminum matrix composite syntactic foams (AMCSFs) using a modified and simplified low-pressure infiltration setup. The influence of different wrought and cast alloys on the compressive behavior of these foams was investigated. Through the use of a variety of different cast and wrought alloys, it was possible to determine the Al matrix’ influence on the compressive behavior . The investigated AlX-Al2O3 syntactic foams were manufactured using hollow alumina spheres with AA1050, AA2024, AA5019, AA7075, and A356 Al alloys in the as-cast state. The results of the manufacturing process and the selected process parameters show a good dispersion of the spheres within the AlX matrix with a typical near randomly close-packed structure at the same time. The high-strength Al alloys AA2024 and AA7075 lead to a very brittle deformation behavior of the foams in the compression tests, with a strongly oscillating behavior plateau and relatively low plateau stress level. In contrast, the low- and mid-strength alloys AA1050, AA5019, and A356 show a more ductile behavior with less oscillation at a higher plateau stress level. By the five different combinations of the material partners, it was possible to make a statement about the ductility–strength relation of metallic syntactic foams in dependence on the base matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashby MF et al (2000) Metal foams: a design guide. Butterworth Heinemann, Burlington

    Google Scholar 

  2. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Banhart J (2013) Light-metal foams—history of innovation and technological challenges. Adv Eng Mater 15(3):82–111

    Article  CAS  Google Scholar 

  4. Xia X et al (2014) Compressive properties of closed-cell aluminum foams with different contents of ceramic microspheres. Mater Des 56:353–358

    Article  CAS  Google Scholar 

  5. Szlancsik A et al (2017) On the effective Young’s modulus of metal matrix syntactic foams. Mater Sci Tech 33(18):2283–2289

    Article  CAS  Google Scholar 

  6. Su M et al (2019) Compressive properties of aluminum matrix syntactic foams prepared by stir casting method. Adv Eng Mater 21:1900183

    Article  Google Scholar 

  7. Orbulov IN, Májlinger K (2013) Description of the compressive response of metal matrix syntactic foams. Mater Des 49:1–3

    Article  CAS  Google Scholar 

  8. Lin Y et al (2017) Microstructure and strength correlation of pure Al and Al-Mg syntactic foam composites subject to uniaxial compression. Mat Sci Eng A 696:236–247

    Article  CAS  Google Scholar 

  9. Castro G et al (2013) Compression and low-velocity impact behavior of aluminum syntactic foam. Mat Sci Eng A 578:222–229

    Article  CAS  Google Scholar 

  10. Balch DK et al (2005) Plasticity and damage in aluminum syntactic foams deformed under dynamic and quasi-static conditions. Mat Sci Eng A 391:408–417

    Article  Google Scholar 

  11. Santa Maria JA et al (2013) Al-Al2O3 syntactic foams—part I: effect of matrix strength and hollow sphere size on the quasi-static properties of Al-A206/Al2O3 syntactic foams. Mat Sci Eng A 582:415–422

    Article  CAS  Google Scholar 

  12. Palmer RA et al (2007) Pressure infiltrated syntactic foams—process development and mechanical properties. Mat Sci Eng A 464:85–92

    Article  Google Scholar 

  13. Wright A, Kennedy A (2017) The processing and properties of syntactic Al foams containing low cost expanded glass particles. Adv Eng Mater 19(11):1600467

    Article  Google Scholar 

  14. Orbulov IN (2013) Metal matrix syntactic foams produced by pressure infiltration—the effect of infiltration parameters. Mat Sci Eng A 583:11–19

    Article  CAS  Google Scholar 

  15. Tao XF et al (2009) Al matrix syntactic foam fabricated with bimodal ceramic microspheres. Mater Des 30:2732–2736

    Article  CAS  Google Scholar 

  16. Tao XF, Zhao YY (2012) Compressive failure of Al alloy matrix syntactic foams manufactured by melt infiltration. Mat Sci Eng A 549:228–232

    Article  CAS  Google Scholar 

  17. Taherishargh M et al (2015) On the particle size effect in expanded perlite aluminium syntactic foam. Mater Des 66:294–303

    Article  CAS  Google Scholar 

  18. Luong DD et al (2013) Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static and high strain rates. J Alloy Compd 550:412–422

    Article  CAS  Google Scholar 

  19. Birla S et al (2017) Effect of cenosphere content on the compressive deformation behaviour of aluminum-cenosphere hybrid foam. Mat Sci Eng A 685:213–226

    Article  CAS  Google Scholar 

  20. Myers K et al (2015) Quasi-static and high strain rate response of aluminum matrix syntactic foams under compression. Compos Part A 79:82–91

    Article  CAS  Google Scholar 

  21. Jaeger HM, Nagel SR (1992) Physics of the granular state. Science 255(5051):1523–1531

    Google Scholar 

  22. Ip SW et al (1993) Wetting behaviour of aluminium and aluminium alloys on Al2O3 and CaO. J Mater Sci Lett 12(21):1699–1702

    Article  CAS  Google Scholar 

  23. Klinter AJ et al (2008) Wetting of pure aluminum and selected alloys on polycrystalline alumina and sapphire. Mat Sci Eng A 495:147–152

    Article  Google Scholar 

  24. Orbulov IN et al (2019) Compressive characteristics of bimodal aluminium matrix syntactic foams. Compos Part A 124:105479

    Article  CAS  Google Scholar 

  25. Katona B et al (2019) Compressive characteristics and low frequency damping of aluminium matrix syntactic foams. Mat Sci Eng A 739:140–148

    Article  CAS  Google Scholar 

  26. Arsenault RJ, Shi N (1986) Dislocation generation due to differences between the coefficients of thermal expansion. Mat Sci Eng 81:175–187

    Article  CAS  Google Scholar 

  27. Guinier P (1938) Structure of age-hardened Aluminium-Copper alloys. Nature 142(3595):569–570

    Article  CAS  Google Scholar 

  28. Berg LK et al (2001) GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater 49(17):3443–3451

    Article  CAS  Google Scholar 

  29. Baumeister J et al (1997) Aluminium foams for transport industry. Mater Des 18(4–6):217–220

    Article  CAS  Google Scholar 

  30. Paul A, Ramamurty U (2000) Strain rate sensitivity of a closed-cell aluminum foam. Mat Sci Eng A 281(1–2):1–7

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the Europäischer Fonds für regionale Entwicklung (EFRE) and the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg within the research center ZAFH InSeL and the financial support through the program “Mittelbau” at HAW by the Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Kubelka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kubelka, P., Matz, A.M., Jost, N. (2020). Compression Behavior of Low-Pressure Cast AMC Syntactic Foams with High Porosity. In: Dukhan, N. (eds) Proceedings of the 11th International Conference on Porous Metals and Metallic Foams (MetFoam 2019). The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-42798-6_11

Download citation

Publish with us

Policies and ethics