Skip to main content

The Role of Physiological Loading on Bone Fracture Healing Under Ilizarov Circular Fixator: The Effects of Load Duration and Loading Frequency

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 36))

Abstract

One of the main advantages of Ilizarov Circular Fixator (ICF) is that it enables early weight bearing, which is beneficial for patients’ mobility. In addition, it is believed that early weight bearing could lead to faster and stronger fracture callus development and thus, enhance healing progression. Therefore, it is important that the early weight bearing exercises (e.g. walking) are carefully designed for the best possible conditions within the fracture site during the crucial early stage of healing. In this study, using a computational model, we explored the influence of (i) duration and (ii) frequency of dynamic loading under ICF (resulting from early weight bearing exercises), on the early fracture microenvironment. The model simulated the interactions and transport of bone cells (i.e. mesenchymal stem cells, osteoblasts, chondrocytes and fibroblasts) and growth factors (i.e. osteogenic growth factor and chondrogenic growth factor) within the early callus under dynamic loading. The changes in cell and growth factor concentrations due to different load durations (1–4 h) and load frequencies (1–4 times/day) were parametrically studied. The results suggest that continuous dynamic loading and longer durations (e.g. 4 h in a stretch) are preferable over shorter durations (e.g. 1 h) and intermittent loading for chondrogenic differentiation, which is beneficial for secondary healing. The results also suggested that, intermittent loading of longer total durations (e.g. 4 times [× 1 h]) could be more beneficial in the later stages for osteogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ai-Aql, Z., Alagl, A.S., Graves, D.T., Gerstenfeld, L.C., Einhorn, T.A.: Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J. Dent. Res. 87, 107–118 (2008)

    Article  Google Scholar 

  2. Doblaré, M., Garcıa, J., Gómez, M.: Modelling bone tissue fracture and healing: a review. Eng. Fract. Mech. 71, 1809–1840 (2004)

    Article  Google Scholar 

  3. Garcia-Aznar, J., Kuiper, J., Gómez-Benito, M., Doblaré, M., Richardson, J.: Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J. Biomech. 40, 1467–1476 (2007)

    Article  Google Scholar 

  4. Augat, P., Simon, U., Liedert, A., Claes, L.: Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos. Int. 16, S36–S43 (2005)

    Article  Google Scholar 

  5. Einhorn, T.A.: The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res. 355, S7–S21 (1998)

    Article  Google Scholar 

  6. Claes, L., Augat, P., Suger, G., Wilke, H.J.: Influence of size and stability of the osteotomy gap on the success of fracture healing. J. Orthop. Res. 15, 577–584 (1997)

    Article  Google Scholar 

  7. Bailon-Plaza, A., Van Der Meulen, M.C.: A mathematical framework to study the effects of growth factor influences on fracture healing. J. Theor. Biol. 212, 191–209 (2001)

    Article  Google Scholar 

  8. Bailón-Plaza, A., van der Meulen, M.C.: Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J. Biomech. 36, 1069–1077 (2003)

    Article  Google Scholar 

  9. Lacroix, D., Prendergast, P.: A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J. Biomech. 35, 1163–1171 (2002)

    Article  Google Scholar 

  10. Prendergast, P., Huiskes, R., Søballe, K.: Biophysical stimuli on cells during tissue differentiation at implant interfaces. J. Biomech. 30, 539–548 (1997)

    Article  Google Scholar 

  11. Isaksson, H., van Donkelaar, C.C., Huiskes, R., Ito, K.: A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J. Theor. Biol. 252, 230–246 (2008)

    Article  MathSciNet  Google Scholar 

  12. Dimitriou, R., Jones, E., McGonagle, D., Giannoudis, P.V.: Bone regeneration: current concepts and future directions. BMC Med. 9, 66 (2011)

    Article  Google Scholar 

  13. Geris, L., Gerisch, A., Vander Sloten, J., Weiner, R., Van Oosterwyck, H.: Angiogenesis in bone fracture healing: a bioregulatory model. J. Theor. Biol. 251, 137–158 (2008)

    Article  MathSciNet  Google Scholar 

  14. Bronson, D.G., Samchukov, M.L., Birch, J.G., Browne, R.H., Ashman, R.B.: Stability of external circular fixation: a multi-variable biomechanical analysis. Clin. Biomech. 13, 441–448 (1998)

    Article  Google Scholar 

  15. Fragomen, A.T., Rozbruch, S.R.: The mechanics of external fixation. HSS J. 3, 13–29 (2007)

    Article  Google Scholar 

  16. Ganadhiepan, G., Zhang, L., Miramini, S., Mendis, P., Patel, M., Ebeling, P., Wang, Y.: The effects of dynamic loading on bone fracture healing under Ilizarov circular fixators. J. Biomech. Eng. 141, 051005-051005-051012 (2019)

    Article  Google Scholar 

  17. Epari, D.R., Taylor, W.R., Heller, M.O., Duda, G.N.: Mechanical conditions in the initial phase of bone healing. Clin. Biomech. 21, 646–655 (2006)

    Article  Google Scholar 

  18. Watson, M., Mathias, K., Maffulli, N., Hukins, D., Shepherd, D.: Finite element modelling of the Ilizarov external fixation system. Proc. Inst. Mech. Eng. [H] 221, 863–871 (2007)

    Article  Google Scholar 

  19. Huiskes, R., Van Driel, W., Prendergast, P., Søballe, K.: A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J. Mater. Sci. - Mater. Med. 8, 785–788 (1997)

    Article  Google Scholar 

  20. McCartney, W., Mac Donald, B., Hashmi, M.: Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading. J. Mater. Process. Technol. 169, 476–484 (2005)

    Article  Google Scholar 

  21. Zhang, L., Miramini, S., Richardson, M., Mendis, P., Ebeling, P.: The role of impairment of mesenchymal stem cell function in osteoporotic bone fracture healing. Aust. Phys. Eng. Sci. Med. 40, 603–610 (2017)

    Article  Google Scholar 

  22. Nerurkar, N.L., Sen, S., Baker, B.M., Elliott, D.M., Mauck, R.L.: Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds. Acta Biomater. 7, 485–491 (2011)

    Article  Google Scholar 

  23. Peiffer, V., Gerisch, A., Vandepitte, D., Van Oosterwyck, H., Geris, L.: A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech. Model. Mechanobiol. 10, 383–395 (2011)

    Article  Google Scholar 

  24. Andreykiv, A., Van Keulen, F., Prendergast, P.: Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech. Model. Mechanobiol. 7, 443–461 (2008)

    Article  Google Scholar 

  25. Lee, D.A., Knight, M.M., Campbell, J.J., Bader, D.L.: Stem cell mechanobiology. J. Cell. Biochem. 112, 1–9 (2011)

    Article  Google Scholar 

  26. Sittichokechaiwut, A., Edwards, J., Scutt, A., Reilly, G.: Short bouts of mechanical loading are as effective as dexamethasone at inducing matrix production by human bone marrow mesenchymal stem cell. Eur. Cell Mater 20, 45–57 (2010)

    Article  Google Scholar 

  27. Liu, L., Yu, B., Chen, J., Tang, Z., Zong, C., Shen, D., Zheng, Q., Tong, X., Gao, C., Wang, J.: Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomech. Model. Mechanobiol. 11, 391–401 (2012)

    Article  Google Scholar 

  28. Winter, L., Walboomers, X., Bumgardner, J., Jansen, J.: Intermittent versus continuous stretching effects on osteoblast-like cells in vitro. J. Biomed. Mater. Res. Part A: Off. J. Soc. Biomater. Japan. Soc. Biomater. Aust. Soci. Biomater. Korean Soc. Biomater. 67, 1269–1275 (2003)

    Article  Google Scholar 

  29. Turner, C.H.: Three rules for bone adaptation to mechanical stimuli. Bone 23, 399–407 (1998)

    Article  Google Scholar 

  30. Robling, A.G., Hinant, F.M., Burr, D.B., Turner, C.H.: Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J. Bone Miner. Res. 17, 1545–1554 (2002)

    Article  Google Scholar 

  31. Remya, N., Nair, P.D.: Mechanoresponsiveness of human umbilical cord mesenchymal stem cells in in vitro chondrogenesis—A comparative study with growth factor induction. J. Biomed. Mater. Res. Part A 104, 2554–2566 (2016)

    Article  Google Scholar 

  32. Bryant, S.J., Nicodemus, G.D., Villanueva, I.: Designing 3D photopolymer hydrogels to regulate biomechanical cues and tissue growth for cartilage tissue engineering. Pharm. Res. 25, 2379–2386 (2008)

    Article  Google Scholar 

  33. Chan, S.C., Ferguson, S.J., Gantenbein-Ritter, B.: The effects of dynamic loading on the intervertebral disc. Eur. Spine J. 20, 1796 (2011)

    Article  Google Scholar 

  34. O’Hara, B., Urban, J., Maroudas, A.: Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 49, 536–539 (1990)

    Article  Google Scholar 

  35. Ganadhiepan, G., Miramini, S., Patel, M., Mendis, P., Zhang, L.: Bone fracture healing under Ilizarov fixator: influence of fixator configuration, fracture geometry, and loading. Int. J. Numer. Methods Biomed. Eng. 35, e3199 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ganesharajah Ganadhiepan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ganadhiepan, G., Miramini, S., Mendis, P., Zhang, L. (2020). The Role of Physiological Loading on Bone Fracture Healing Under Ilizarov Circular Fixator: The Effects of Load Duration and Loading Frequency. In: Ateshian, G., Myers, K., Tavares, J. (eds) Computer Methods, Imaging and Visualization in Biomechanics and Biomedical Engineering. CMBBE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-43195-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-43195-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-43194-5

  • Online ISBN: 978-3-030-43195-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics