Skip to main content

A Multilevel Monte Carlo Asymptotic-Preserving Particle Method for Kinetic Equations in the Diffusion Limit

  • Conference paper
  • First Online:
Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2018)

Abstract

We propose a multilevel Monte Carlo method for a particle-based asymptotic-preserving scheme for kinetic equations. Kinetic equations model transport and collision of particles in a position-velocity phase-space. With a diffusive scaling, the kinetic equation converges to an advection-diffusion equation in the limit of zero mean free path. Classical particle-based techniques suffer from a strict time-step restriction to maintain stability in this limit. Asymptotic-preserving schemes provide a solution to this time step restriction, but introduce a first-order error in the time step size. We demonstrate how the multilevel Monte Carlo method can be used as a bias reduction technique to perform accurate simulations in the diffusive regime, while leveraging the reduced simulation cost given by the asymptotic-preserving scheme. We describe how to achieve the necessary correlation between simulation paths at different levels and demonstrate the potential of the approach via numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D.F., Higham, D.J.: Multilevel Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics. Multiscale Model. Simul. 10(1), 146–179 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bennoune, M., Lemou, M., Mieussens, L.: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics. J. Comput. Phys. 227(8), 3781–3803 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511–525 (1954)

    Google Scholar 

  4. Birdsall, C.K., Langdon, A.B.: Plasma Physics via Computer Simulation. Series in Plasma Physics and Fluid Dynamics. Taylor & Francis (2004)

    Google Scholar 

  5. Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)

    Article  MathSciNet  Google Scholar 

  6. Buet, C., Cordier, S.: An asymptotic preserving scheme for hydrodynamics radiative transfer models. Numer. Math. 108(2), 199–221 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cercignani, C.: The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, vol. 67. Springer, New York, NY (1988)

    Book  Google Scholar 

  8. Cliffe, K.A., Giles, M.B., Scheichl, R., Teckentrup, A.L.: Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients. Comput. Vis. Sci. 14(1), 3–15 (2011)

    Article  MathSciNet  Google Scholar 

  9. Crestetto, A., Crouseilles, N., Lemou, M.: A particle micro-macro decomposition based numerical scheme for collisional kinetic equations in the diffusion scaling. Commun. Math. Sci. 16(4), 887–911 (2018)

    Article  MathSciNet  Google Scholar 

  10. Crouseilles, N., Lemou, M.: An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinet. Relat. Model. 4(2), 441–477 (2011)

    Article  MathSciNet  Google Scholar 

  11. Degond, P., Dimarco, G., Pareschi, L.: The moment-guided Monte Carlo method. Int. J. Numer. Methods Fluids 67(2), 189–213 (2011)

    Article  MathSciNet  Google Scholar 

  12. Dimarco, G., Pareschi, L.: Hybrid multiscale methods II. Kinetic equations. Multiscale Model. Simul. 6(4), 1169–1197 (2008)

    Article  MathSciNet  Google Scholar 

  13. Dimarco, G., Pareschi, L.: Fluid solver independent hybrid methods for multiscale kinetic equations. SIAM J. Sci. Comput. 32(2), 603–634 (2010)

    Article  MathSciNet  Google Scholar 

  14. Dimarco, G., Pareschi, L.: High order asymptotic-preserving schemes for the Boltzmann equation. Comptes Rendus Math. 350(9–10), 481–486 (2012)

    Article  MathSciNet  Google Scholar 

  15. Dimarco, G., Pareschi, L.: Numerical methods for kinetic equations. Acta Numer. 23, 369–520 (2014)

    Article  MathSciNet  Google Scholar 

  16. Dimarco, G., Pareschi, L., Samaey, G.: Asymptotic-Preserving Monte Carlo methods for transport equations in the diffusive limit. SIAM J. Sci. Comput. 40, A504–A528 (2017)

    Article  MathSciNet  Google Scholar 

  17. Giles, M.B.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  Google Scholar 

  18. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  Google Scholar 

  19. Gosse, L., Toscani, G.: An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. Comptes Rendus Math. 334(4), 337–342 (2002)

    Article  MathSciNet  Google Scholar 

  20. Jin, S.: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21(2), 441–454 (1999)

    Article  MathSciNet  Google Scholar 

  21. Jin, S., Pareschi, L., Toscani, G.: Diffusive relaxation schemes for multiscale discrete-velocity kinetic equations. SIAM J. Numer. Anal. 35(6), 2405–2439 (1998)

    Article  MathSciNet  Google Scholar 

  22. Jin, S., Pareschi, L., Toscani, G.: Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38(3), 913–936 (2000)

    Article  MathSciNet  Google Scholar 

  23. Klar, A.: An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35(3), 1073–1094 (1998)

    Article  MathSciNet  Google Scholar 

  24. Klar, A.: A numerical method for kinetic semiconductor equations in the drift-diffusion limit. SIAM J. Sci. Comput. 20(5), 1696–1712 (1999)

    Article  MathSciNet  Google Scholar 

  25. Lapeyre, B., Pardoux, É., Sentis, R., Craig, A.W., Craig, F.: Introduction to Monte Carlo Methods for Transport and Diffusion Equations, vol. 6. Oxford University Press (2003)

    Google Scholar 

  26. Larsen, E.W., Keller, J.B.: Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15(1), 75–81 (1974)

    Article  MathSciNet  Google Scholar 

  27. Lemou, M., Mieussens, L.: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 31(1), 334–368 (2008)

    Article  MathSciNet  Google Scholar 

  28. Naldi, G., Pareschi, L.: Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37(4), 1246–1270 (2000)

    Article  MathSciNet  Google Scholar 

  29. Pareschi, L., Caflisch, R.E.: An implicit Monte Carlo method for rarefied gas dynamics. J. Comput. Phys. 154(1), 90–116 (1999)

    Article  MathSciNet  Google Scholar 

  30. Pareschi, L., Russo, G.: An introduction to Monte Carlo method for the Boltzmann equation. ESAIM Proc. 10, 35–75 (2001)

    Google Scholar 

  31. Pareschi, L., Trazzi, S.: Numerical solution of the Boltzmann equation by time relaxed Monte Carlo (TRMC) methods. Int. J. Numer. Methods Fluids 48(9), 947–983 (2005)

    Article  MathSciNet  Google Scholar 

  32. Pope, S.B.: A Monte Carlo method for the PDF equations of turbulent reactive flow. Combust. Sci. Technol. 25(5–6), 159–174 (1981)

    Article  Google Scholar 

  33. Rousset, M., Samaey, G.: Simulating individual-based models of bacterial chemotaxis with asymptotic variance reduction. Math. Model. Methods Appl. Sci. 23(12), 2155–2191 (2011)

    Article  MathSciNet  Google Scholar 

  34. Van Barel, A., Vandewalle, S.: Robust optimization of PDEs with random coefficients using a multilevel Monte Carlo method. SIAM J. Uncertain. Quantif. 7(1), 174–202 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Pieterjan Robbe for many helpful discussions on the multilevel Monte Carlo method. We also thank the anonymous reviewers for their helpful suggestions for improving the quality of this work. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation—Flanders (FWO) and the Flemish Government—department EWI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Løvbak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Løvbak, E., Samaey, G., Vandewalle, S. (2020). A Multilevel Monte Carlo Asymptotic-Preserving Particle Method for Kinetic Equations in the Diffusion Limit. In: Tuffin, B., L'Ecuyer, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-43465-6_19

Download citation

Publish with us

Policies and ethics