Skip to main content

Multilevel Quasi-Monte Carlo Uncertainty Quantification for Advection-Diffusion-Reaction

  • Conference paper
  • First Online:
Book cover Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2018)

Abstract

We survey the numerical analysis of a class of deterministic, higher-order QMC integration methods in forward and inverse uncertainty quantification algorithms for advection-diffusion-reaction (ADR) equations in polygonal domains \(D\subset {\mathbb {R}}^2\) with distributed uncertain inputs. We admit spatially heterogeneous material properties. For the parametrization of the uncertainty, we assume at hand systems of functions which are locally supported in D. Distributed uncertain inputs are written in countably parametric, deterministic form with locally supported representation systems. Parametric regularity and sparsity of solution families and of response functions in scales of weighted Kontrat’ev spaces in D are quantified using analytic continuation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For spaces V of real-valued functions, \(V^*\) denotes the Hilbertian dual; in the case that solutions \(q({\varvec{y}})\) are complex-valued, e.g. for Helmholtz problems, \(V^*\) denotes the antidual of V. Even for parametric models with real valued solutions, complexification is required for analytic continuation to complex parameters [5].

References

  1. Adler, J.H., Nistor, V.: Graded mesh approximation in weighted Sobolev spaces and elliptic equations in 2D. Math. Comput. 84(295), 2191–2220 (2015)

    Article  MathSciNet  Google Scholar 

  2. Aylwin, R., Jerez-Hanckes, C., Schwab, C., Zech, J.: Domain uncertainty quantification in computational electromagnetics. SIAM/ASA Uncertain. Quantif. 8(1), 301–341 (2020)

    Google Scholar 

  3. Babuška, I., Kellogg, R.B., Pitkäranta, J.: Direct and inverse error estimates for finite elements with mesh refinements. Numer. Math. 33(4), 447–471 (1979)

    Article  MathSciNet  Google Scholar 

  4. Babuška, I., Banerjee, U., Li, H.: The effect of numerical integration on the finite element approximation of linear functionals. Numer. Math. 117(1), 65–88 (2011)

    Article  MathSciNet  Google Scholar 

  5. Băcuţă, C., Li, H., Nistor, V.: Differential operators on domains with conical points: precise uniform regularity estimates. Rev. Roumaine Math. Pures Appl. 62(3), 383–411 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bui-Thanh, T., Girolami, M.: Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo. Inverse Probl. 30(11), 114,014, 23 (2014)

    Google Scholar 

  7. Chen, L., Nochetto, R.H., Xu, J.: Optimal multilevel methods for graded bisection grids. Numer. Math. 120(1), 1–34 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chen, P., Villa, U., Ghattas, O.: Hessian-based adaptive sparse quadrature for infinite-dimensional Bayesian inverse problems. Comput. Methods Appl. Mech. Engrg. 327, 147–172 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chkifa, A., Cohen, A., Schwab, C.: Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103(2), 400–428 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  11. Cohen, A., DeVore, R., Schwab, Ch.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9(1), 11–47 (2011)

    Article  MathSciNet  Google Scholar 

  12. Constantine, G.M., Savits, T.H.: A multivariate Faà di Bruno formula with applications. Trans. Am. Math. Soc. 348(2), 503–520 (1996)

    Article  Google Scholar 

  13. Dashti, M., Stuart, A.M.: The Bayesian approach to inverse problems. pp. 1–118. Springer International Publishing (2015)

    Google Scholar 

  14. Davydov, O., Stevenson, R.: Hierarchical Riesz bases for \(H^s(\Omega ), 1<s<{5\over 2}\). Constr. Approx. 22(3), 365–394 (2005)

    Article  MathSciNet  Google Scholar 

  15. Dick, J., Gantner, R.N., LeGia, Q.T., Schwab, C.: Multilevel higher-order quasi-Monte Carlo Bayesian estimation. Math. Models Methods Appl. Sci. 27(5), 953–995 (2017)

    Article  MathSciNet  Google Scholar 

  16. Dick, J., Gantner, R.N., LeGia, Q.T., Schwab, C.: Higher order quasi-Monte Carlo integration for Bayesian PDE inversion. Comput. Math. Appl. 77(1), 144–172 (2019)

    Article  MathSciNet  Google Scholar 

  17. Dick, J., Kuo, F.Y., LeGia, Q.T., Nuyens, D., Schwab, Ch.: Higher order QMC Petrov-Galerkin discretization for affine parametric operator equations with random field inputs. SIAM J. Numer. Anal. 52(6), 2676–2702 (2014)

    Article  MathSciNet  Google Scholar 

  18. Dick, J., Kuo, F.Y., LeGia, Q.T., Schwab, Ch.: Multilevel higher order QMC Petrov-Galerkin discretization for affine parametric operator equations. SIAM J. Numer. Anal. 54(4), 2541–2568 (2016)

    Article  MathSciNet  Google Scholar 

  19. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  Google Scholar 

  20. Dick, J., LeGia, Q.T., Schwab, C.: Higher order quasi-Monte Carlo integration for holomorphic, parametric operator equations. SIAM/ASA J. Uncertain. Quantif. 4(1), 48–79 (2016)

    Article  MathSciNet  Google Scholar 

  21. Dodwell, T.J., Ketelsen, C., Scheichl, R., Teckentrup, A.L.: A hierarchical multilevel Markov chain Monte Carlo algorithm with applications to uncertainty quantification in subsurface flow. SIAM/ASA J. Uncertain. Quantif. 3(1), 1075–1108 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gantner, R.N., Herrmann, L., Schwab, C.: Multilevel QMC with product weights for affine-parametric, elliptic PDEs. In: Dick, J., Kuo, F.Y., Woźniakowski, H. (eds.) Contemporary Computational Mathematics-A Celebration of the 80th Birthday of Ian Sloan, pp. 373–405. Springer, Cham (2018)

    Chapter  Google Scholar 

  23. Gantner, R.N., Herrmann, L., Schwab, C.: Quasi-Monte Carlo integration for affine-parametric, elliptic PDEs: local supports and product weights. SIAM J. Numer. Anal. 56(1), 111–135 (2018)

    Article  MathSciNet  Google Scholar 

  24. Gantner, R.N., Peters, M.D.: Higher-order Quasi-Monte Carlo for Bayesian shape inversion. SIAM/ASA J. Uncertain. Quantif. 6(2), 707–736 (2018)

    Article  MathSciNet  Google Scholar 

  25. Gaspoz, F.D., Morin, P.: Convergence rates for adaptive finite elements. IMA J. Numer. Anal. 29(4), 917–936 (2009)

    Article  MathSciNet  Google Scholar 

  26. Giles, M.B.: Multilevel Monte Carlo methods. Acta Numer. 24, 259–328 (2015)

    Article  MathSciNet  Google Scholar 

  27. Herrmann, L.: Quasi-Monte Carlo integration in uncertainty quantification for PDEs with log-Gaussian random field inputs. Ph.D. thesis. ETH Zürich, Diss. ETH No. 25849 (2019)

    Google Scholar 

  28. Herrmann, L., Schwab, C.: Multilevel Quasi-Monte Carlo integration with product weights for elliptic PDEs with lognormal coefficients. ESAIM: Math. Model. Numer. Anal. 53(5), 1507–1552 (2019)

    Google Scholar 

  29. Herrmann, L., Schwab, C., Zech, J.: Uncertainty quantification for spectral fractional diffusion: Sparsity analysis of parametric solutions. SIAM/ASA J. Uncertain. Quantif. 7(3), 913–947 (2019)

    Google Scholar 

  30. Hoang, V.H., Schwab, C., Stuart, A.M.: Complexity analysis of accelerated MCMC methods for Bayesian inversion. Inverse Probl. 29(8), 085010, 37 (2013)

    Google Scholar 

  31. Houston, P., Schwab, C., Süli, E.: Discontinuous \(hp\)-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MathSciNet  Google Scholar 

  32. Kuo, F.Y., Scheichl, R., Schwab, C., Sloan, I.H., Ullmann, E.: Multilevel Quasi-Monte Carlo methods for lognormal diffusion problems. Math. Comput. 86(308), 2827–2860 (2017)

    Article  MathSciNet  Google Scholar 

  33. Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53(1), 1–37 (2011)

    Article  MathSciNet  Google Scholar 

  34. Kuo, F.Y., Schwab, Ch., Sloan, I.H.: Multi-level Quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15(2), 411–449 (2015)

    Article  MathSciNet  Google Scholar 

  35. Müller, F., Schötzau, D., Schwab, C.: Symmetric interior penalty discontinuous Galerkin methods for elliptic problems in polygons. SIAM J. Numer. Anal. 55(5), 2490–2521 (2017)

    Article  MathSciNet  Google Scholar 

  36. Nitsche, P.A.: Sparse approximation of singularity functions. Constr. Approx. 21(1), 63–81 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Nochetto, R.H., Veeser, A.: Primer of adaptive finite element methods. In: Multiscale and Adaptivity: Modeling, Numerics and Applications. Lecture Notes in Mathematics, vol. 2040, pp. 125–225. Springer, Heidelberg (2012)

    Google Scholar 

  38. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75(254), 903–920 (electronic) (2006)

    Google Scholar 

  39. Nuyens, D., Cools, R.: Fast component-by-component construction of rank-1 lattice rules with a non-prime number of points. J. Complex. 22(1), 4–28 (2006)

    Article  MathSciNet  Google Scholar 

  40. Opic, B., Kufner, A.: Hardy-type inequalities. Pitman Research Notes in Mathematics Series, vol. 219. Longman Scientific Technical, Harlow (1990)

    MATH  Google Scholar 

  41. Rekatsinas, N., Stevenson, R.: A quadratic finite element wavelet Riesz basis. Int. J. Wavelets Multiresolut. Inf. Process. 16(4), 1850033, 17 (2018)

    Google Scholar 

  42. Scheichl, R., Stuart, A.M., Teckentrup, A.L.: Quasi-Monte Carlo and multilevel Monte Carlo methods for computing posterior expectations in elliptic inverse problems. SIAM/ASA J. Uncertain. Quantif. 5(1), 493–518 (2017)

    Article  MathSciNet  Google Scholar 

  43. Schillings, C., Schwab, C.: Sparse, adaptive Smolyak quadratures for Bayesian inverse problems. Inverse Probl. 29(6), 065011, 28 (2013)

    Google Scholar 

  44. Schillings, C., Schwab, C.: Sparsity in Bayesian inversion of parametric operator equations. Inverse Probl. 30(6), 065007, 30 (2014)

    Google Scholar 

  45. Schneider, R.: Optimal convergence rates of adaptive algorithms for finite element multiscale methods. In: Boundary value problems and integral equations in nonsmooth domains (Luminy, 1993). Lecture Notes in Pure and Applied Mathematics, vol. 167, pp. 269–284. Dekker, New York (1995)

    Google Scholar 

  46. Schwab, C.: \(p\)- and \(hp\)-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998)

    Google Scholar 

  47. Stevenson, R.: Stable three-point wavelet bases on general meshes. Numer. Math. 80(1), 131–158 (1998)

    Article  MathSciNet  Google Scholar 

  48. Stevenson, R.: Locally supported, piecewise polynomial biorthogonal wavelets on nonuniform meshes. Constr. Approx. 19(4), 477–508 (2003)

    Article  MathSciNet  Google Scholar 

  49. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)

    Article  MathSciNet  Google Scholar 

  50. Yoshiki, T.: Bounds on Walsh coefficients by dyadic difference and a new Koksma-Hlawka type inequality for Quasi-Monte Carlo integration. Hiroshima Math. J. 47(2), 155–179 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Swiss National Science Foundation (SNSF) under grant SNF 159940. This work was completed when LH was a member of the Seminar for Applied Mathematics at ETH Zürich. The authors thank the editors and one reviewer for his/her careful reading and the constructive remarks on our initial submission which improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Schwab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herrmann, L., Schwab, C. (2020). Multilevel Quasi-Monte Carlo Uncertainty Quantification for Advection-Diffusion-Reaction. In: Tuffin, B., L'Ecuyer, P. (eds) Monte Carlo and Quasi-Monte Carlo Methods. MCQMC 2018. Springer Proceedings in Mathematics & Statistics, vol 324. Springer, Cham. https://doi.org/10.1007/978-3-030-43465-6_2

Download citation

Publish with us

Policies and ethics