Skip to main content

Field Assessment of ASR-Affected Structures

  • Chapter
  • First Online:
Diagnosis & Prognosis of AAR Affected Structures

Abstract

This chapter deals with the structural monitoring of concrete structures which are affected by alkali-silica reactions (ASR). Its purpose is to present an overview of the main proven monitoring and testing techniques that are available to determine the presence of ASR within a structure and assess the remaining capacity. However, the scope is not limited to the possible damage induced by ASR, but it also addresses other outward and inward manifestations of the pathology. The methods presented are illustrated by some case studies, from operational experiences gained in different countries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sausse, J., Fabre, J.: Diagnosis of dams affected by swelling reactions: lessons learned from 150 monitored concrete dams in France. In: 6th International Conference on Dam Engineering, Lisbon, Portugal, pp. 156–157 (2011)

    Google Scholar 

  2. Mauris, F., Martinot, F., Fabre, J., Bourgey, P., Sausse, J.: Synthesis of hydraulic structures behavior: lessons learned from monitored dams of EDF in France. In: Long-Term Behaviour and Environmentally Friendly Rehabilitation Technologies of Dams, p. 22 (2015)

    Google Scholar 

  3. Guilloteau, T., Martinot, F., Sausse, J.: Long-term behaviour of EDF dams regarding concrete swelling structures. In: Swelling Concrete in Dams and Hydraulic Structures, DSC 2017, p. 338 (2017)

    Google Scholar 

  4. FHWA: New FHWA program to combat ASR in concrete. Technical report. FHWA-HRT- 07-012. Federal Highway Administration (2007)

    Google Scholar 

  5. Magne, I., Granger, L., Guinet, P.: Prévision du fluage et du gonflement du caisson UNGG de Saint-Laurent. Revue française de génie civil 2(1), 123–142 (1998)

    Google Scholar 

  6. Naus, D.: Inspection of nuclear power plant structures-overview of methods and related applications. Technical report. Oak Ridge National Laboratory (United States). (ORNL/TM-2007/191) (2009)

    Google Scholar 

  7. Snyder, K., Sung, L., Cheok, G.: Nondestructive testing (NDT) and sensor technology for service life modeling of new and existing concrete structures. Technical report. NIST Interagency/Internal Report (NISTIR)-7974 (2013)

    Google Scholar 

  8. Thomas, M., Fournier, B., Folliard, K.: Alkali-aggregate reactivity (AAR) facts book. Technical report. FHWA-HIF-13-019. United States. Federal Highway Administration. Office of Pavement Technology (2013)

    Google Scholar 

  9. Stanton, T.: Expansion of concrete through reaction between cement and aggregate. Proc. ASCE 66, 1781–1811 (1940)

    Google Scholar 

  10. Folliard, K., Thomas, M., Kurtis, K.: Guidelines for the use of lithium to mitigate or prevent ASR. Technical report. FHWA-RD-03-047. Federal Highway Administration (2003)

    Google Scholar 

  11. Walther, J., Helgeson, H.: Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperatures. Am. J. Sci 277(10), 1315–1351 (1977)

    Article  Google Scholar 

  12. Sjöberg, S.: Silica in aqueous environments. J. Non-Cryst. Solids 196, 51–57 (1996)

    Google Scholar 

  13. Brantley, S., Kubicki, J., White, A.: Kinetics of water-rock interaction (2008)

    Google Scholar 

  14. Maraghechi, H.: Development and assessment of alkali activated recycled glass-based concretes for civil infrastructure. Ph.D. thesis. The Pennsylvania State University (2014)

    Google Scholar 

  15. Rajabipour, F., Giannini, E., Dunant, C., Ideker, J.H., Thomas, M.: Alkali-silica reaction: current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 76, 130–146 (2015)

    Article  Google Scholar 

  16. Nakamura, E., Watanabe, H., Koga, H.: Shear resisting mechanism in RC beams with stirrups fracture due to ASR expansion. In: Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete (2008)

    Google Scholar 

  17. Kreitman, K.: Nondestructive evaluation of reinforced concrete structures affected by ASR. MS thesis. University of Texas, Austin (2011)

    Google Scholar 

  18. Swamy, R., Al-Asali, M.: Effect of alkali-silica reaction on the structural behavior of reinforced concrete beams. Struct. J. 86(4), 451–459 (1989)

    Google Scholar 

  19. Fournier, B., Bérubé, M.: Alkali-aggregate reaction in concrete: a review of basic concepts and engineering implications. Can. J. Civ. Eng. 27(2), 167–191 (2000)

    Article  Google Scholar 

  20. Ahmed, T., Burley, E., Rigden, S., Abu-Tair, A.: The effect of alkali reactivity on the mechanical properties of concrete. Constr Build. Mater. 17(2), 123–144 (2003)

    Article  Google Scholar 

  21. Smaoui, N., Bissonnette, B., Bérubé, M., Fournier, B., Durand, B.: Mechanical properties of ASR-affected concrete containing fine or coarse reactive aggregates. J. ASTM Int. 3(3), 1–16 (2005)

    Google Scholar 

  22. Giaccio, G., Zerbino, R., Ponce, J., Batic, O.: Mechanical behavior of concretes damaged by alkali-silica reaction. Cem. Concr. Res. 38(7), 993–1004 (2008)

    Article  Google Scholar 

  23. Rivard, P., Saint-Pierre, F.: Assessing alkali-silica reaction damage to concrete with non-destructive methods: from the lab to the field. Constr. Build. Mater. 23(2), 902–909 (2009)

    Article  Google Scholar 

  24. Rivard, P., Ballivy, G., Gravel, C., Saint-Pierre, F.: Monitoring of an hydraulic structure affected by ASR: a case study. Cem. Concr. Res. 40(4), 676–680 (2010)

    Article  Google Scholar 

  25. Gallias, J.: Comparison of Damaging criteria for testing aggregates by autoclaving treatement. In: Proceedings of the 11th ICAAR, Quebec, Canada, pp. 949–958 (2000)

    Google Scholar 

  26. Sargolzahi, M., Kodjo, S., Rivard, P., Rhazi, J.: Effectiveness of nondestructive testing for the evaluation of alkali-silica reaction in concrete. Constr. Build. Mater. 24(8), 1398–1403 (2010)

    Article  Google Scholar 

  27. Chana, P., Korobokis, G.: The structural performance of reinforced concrete affected by alkali silica reaction: Phase II. Technical report. Contractor Report 311, Transport and Road Research Laboratory, Crowthorne, Berkshire, United Kingdom (1992)

    Google Scholar 

  28. Bach, F., Thorsen, T., Nielsen, M.: Load-carrying capacity of structural members subjected to alkali-silica reactions. Constr. Build. Mater. 7(2), 109–115 (1993)

    Article  Google Scholar 

  29. Monette, L.: Effects of the alkali-silica reaction on unloaded, statically loaded and dynamically loaded reinforced concrete beams. MS thesis. University of Ottawa (Canada) (1998)

    Google Scholar 

  30. den Uijl, J., Kaptijn, N.: Shear tests on beams cut from ASR-affected bridge decks. Spec. Publ. 211, 115–134 (2003)

    Google Scholar 

  31. Blight, G., Alexander, M., Schutte, W., Ralph, T.: The effect of alkali aggregate reaction on the strength and deformation of a reinforced concrete structure. In: Proceedings of the Sixth International Conference on Alkali-Aggregate Reaction, pp. 401–410 (1983)

    Google Scholar 

  32. Imai, H., Yamasaki, T., Maehara, H., Miyagawa, T.: The deterioration by alkali-silica reaction of Hanshin expressway concrete structures-investigation and repair. In: Proceedings of The 7th International Conference on Concrete Alkali-Aggregate Reactions, Ottawa, Canada (1986). Noyes Publications Publications (1987)

    Google Scholar 

  33. Blight, G., Alexander, M., Ralph, T., Lewis, B.: Effect of alkali-aggregate reaction on the performance of a reinforced concrete structure over a six-year period. Mag. Concr. Res. 41(147), 69–77 (1989)

    Article  Google Scholar 

  34. Boenig, A.: Bridges with premature concrete deterioration: field observations and large-scale testing. MS thesis. University of Texas, Austin (2001)

    Google Scholar 

  35. Deschenes, D.: ASR/DEF-damaged bent caps: shear tests and field implications. MS thesis. University of Texas (2009)

    Google Scholar 

  36. Larson, N.: Structural performance of ASR/DEF damaged prestressed concrete trapezoidal box beams with dapped ends. MS thesis (2010)

    Google Scholar 

  37. Mikata, Y., Shimazu, Y., Hatano, Y., Inoue, S.: Flexural and shear capacity of PRC beams damaged by combined deterioration due to ASR and corrosion. In: Proceedings of the 14th International Conference on Alkali-Aggregate Reaction in Concrete, Austin, TX (2012)

    Google Scholar 

  38. Webb, Z.: Experimental investigation of ASR/DEF-induced reinforcing bar fracture. MS thesis. University of Texas at Austin (2011)

    Google Scholar 

  39. Miyagawa, T., Seto, K., Sasaki, K., Mikata, Y., Kuzume, K., Minami, T.: Fracture of reinforcing steels in concrete structures damaged by alkali-silica reaction - field survey, mechanism and maintenance. J. Adv. Concr. Technol. 4(3), 339–355 (2006)

    Google Scholar 

  40. Torii, K., Wasada, S., Sasatani, T., Minato, T.: A survey on ASR-affected bridge piers with fracture of steel bars on Noto expressway. In: Proceedings of 13th International Conference on Alkali-aggregate Reaction in Concrete, pp. 1304–1311 (2008)

    Google Scholar 

  41. Ichikawa, T., Miura, M.: Modified model of alkali-silica reaction. Cem. Concr. Res. 37(9), 1291–1297 (2007)

    Article  Google Scholar 

  42. Ostertag, C., Yi, C., Monteiro, P.: Effect of confinement on properties and characteristics of alkali-silica reaction gel. ACI Mater. J. 104(3), 276 (2007)

    Google Scholar 

  43. Payan, C., Abraham, O., Garnier, V.: 2—Ultrasonic methods. In: Balayssac, J.-P., Garnier, V. (eds.) Non-Destructive Testing and Evaluation of Civil Engineering Structures, pp. 21–85. Elsevier (2018)

    Google Scholar 

  44. Nilsson, L.: Pop-outs due to alkali-silica reaction - a moisture problem? In: Proceeding 5th International Conference on AAR in Concrete, Cape Town-South Africa, p. S252 (1981)

    Google Scholar 

  45. Nilsson, L.: Moisture effects on the alkali-silica reaction. In: Proceedings of the 6th International Conference on AAR in Concrete, Copenhagen, Denmark, pp. 201–208 (1983)

    Google Scholar 

  46. Stark, D.: The moisture condition of field concrete exhibiting alkali-silica reactivity. Spec. Publ. 126, 973–988 (1991)

    Google Scholar 

  47. Pedneault, A.: Development of testing and analytical procedures for the evaluation of the residual potential of reaction, expansion, and deterioration of concrete affected by ASR. MA thesis. Laval University (1996)

    Google Scholar 

  48. Courtois, A., Taillade, F., Moreau, G., Clauzon, T., Skoczylas, F., Masson, B.: Water content monitoring for nuclear concrete buildings: needs, feedback and perspectives. In: 5th BIOT Conference on Poromechanics, pp. 10–12 (2013)

    Google Scholar 

  49. Jensen, V.: Relative humidity measured by wooden stick method in concrete structures: longterm measurements and reduction of humidity by surface treatment. SP 212-39, Proceedings, Sixth CANMET/ACI Conference on Durability of Concrete. In: ACI International Conferences, Thessaloniki, Greece, pp. 621–636 (2003)

    Google Scholar 

  50. Quincot, G., Azenha, M., Barros, J., Faria, R.: State of the art-methods to measure moisture in concrete. In: Projetos De Investigação Científica E Desenvolvimento Tecnológico, Portugal (2011)

    Google Scholar 

  51. Oxfall, M.: Climatic conditions inside nuclear reactor containments: evaluation of moisture condition in the concrete within reactor containments and interaction with the ambient compartments (2016)

    Google Scholar 

  52. Thomas, M., Folliard, K., Fournier, B., Rivard, P., Drimalas, T., Garber, S.: Methods for evaluating and treating ASR-affected structures: results of field application and demonstration projects-Volume II: Details of field applications and analysis. Technical report. Report No. FHWA-HIF-14-0003. Federal Highway Administration (2013)

    Google Scholar 

  53. Andrade, C., Sarria, J., Alonso, C.: Relative humidity in the interior of concrete exposed to natural and artificial weathering. Cem. Concr. Res. 29(8), 1249–1259 (1999)

    Article  Google Scholar 

  54. Grasley, Z.: Internal relative humidity, drying stress gradients, and hygrothermal dilation of concrete. PhD thesis. University of Illinois at Urbana-Champaign (2003)

    Google Scholar 

  55. Hedenblad, G.: Measurement of moisture in high performance concrete. In: 5th International Symposium on Utilization of High Strength/High performance Concrete, vol. 2, pp. 1124–1133 (1999)

    Google Scholar 

  56. Giannini, E.R.: Field studies of mitigation strategies for alkali-silica reaction in hardened concrete. MS thesis. University of Texas at Austin (2009)

    Google Scholar 

  57. Deschenes, Jr., R., Giannini, E.R., Drimalas, T., Fournier, B., Hale, W.M.: Mitigating alkali-silica reaction and freezing and thawing in concrete pavement by silane treatment. ACI Mater. J. 115(5) (2018)

    Google Scholar 

  58. Adous, M., Quéffélec, P., Laguerre, L.: Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials. Measur. Sci. Technol. 17(8), 2241 (2006)

    Google Scholar 

  59. Laurens, S., Balayssac, J.-P., Rhazi, J., Arliguie, G.: Influence of concrete relative humidity on the amplitude of ground-penetrating radar (GPR) signal. Mater. Struct. 35(4), 198–203 (2002)

    Article  Google Scholar 

  60. Sbartaï, Z., Laurens, S., Rhazi, J., Balayssac, J., Arliguie, G.: Using radar direct wave for concrete condition assessment: correlation with electrical resistivity. J. Appl. Geophys. 62(4), 361–374 (2007)

    Article  Google Scholar 

  61. Al-Qadi, I., Riad, S., Mostaf, R., Su, W.: Design and evaluation of a coaxial transmission line fixture to characterize Portland cement concrete. Constr. Build. Mater. 11(3), 163–173 (1997)

    Article  Google Scholar 

  62. Pavlík, Z., Jiřičková, M., Černỳ, R., Sobczuk, H., Suchorab, Z.: Determination of moisture diffusivity using the time domain reflectometry (TDR) method. J. Build. Phys. 30(1), 59–70 (2006)

    Article  Google Scholar 

  63. Coyne, A.: Quelques résultats d’auscultation sonore sur les ouvrages en béton, béton armé ou métal. In: Annales ITBTP, Juillet-Août (1938)

    Google Scholar 

  64. Oukhemanou, E., Desforges, S., Buchoud, E., Michel-Ponnelle, S., Courtois, A.: VeRCoRs mock-up: comprehensive monitoring system for reduced scale containment model. In: Proceedings of the Technical Innovation in Nuclear Civil Engineering (TINCE), Paris, France (2016)

    Google Scholar 

  65. Filali, B., Boone, F., Rhazi, J., Ballivy, G.: Design and calibration of a large open-ended coaxial probe for the measurement of the dielectric properties of concrete. IEEE Trans. Microw. Theory Tech. 56(10), 2322–2328 (2008)

    Article  Google Scholar 

  66. Guihard, V., Haelewyn, J., Courtois, A., Taillade, F., Balayssac, J., Placko, D., Sanahuja, J.: Relevance and means for measuring water content in concrete structures. An illustration with PWR concrete containment. In: TINCE 2018 Conference Proceedings, Paris (2018)

    Google Scholar 

  67. Hashemi, A., Horst, M., Kurtis, K., Donnell, K.M., Zoughi, R.: Comparison of alkali-silica reaction gel behavior in mortar at microwave frequencies. IEEE Trans. Instrum. Measur. 64(7), 1907–1915 (2015)

    Google Scholar 

  68. Freeseman, K., Hoegh, K., Khazanovich, L.: Characterization of concrete at various freeze-thaw damage conditions using SH-waves. AIP Conf. Proc. (AIP Publishing) 1706(1), 020017 (2016)

    Google Scholar 

  69. Roctest: Instruction manual. Direct and inverted pendulums. Models DP and RP. Technical report. E10065060901. Roctest Ltd. (2006)

    Google Scholar 

  70. Abrishami, H., Tcherner, J., Barre, F., Borgerhoff, M., Bumann, U., Calonius, K., Courtois, A., Debattista, J.-M., Gallitre, E., Isard, C., Elison, O., Graves, H., Sircar, M., Huerta, A., White, A., Jackson, P., Kjellin, D., Lillhoek, S., Louhivirta, J., Myllymaeki, J., Vaelikangas, P., Martin, J., Nakano, M., Puttonen, J., Rambach, J.-M., Tarallo, F., Smith, L., Stepan, J., Touret, J.-P., Varpasuo, P.: Bonded or unbonded technologies for nuclear reactor prestressed concrete containments. Technical report. NEA-CSNI-R–2015-5 Nuclear Energy Agency of the Organisation for Economic Co-Operation and Development (2015)

    Google Scholar 

  71. Smith, L., Brodt, G., Stafford, B.: Performance assessment and reinstatement of vibrating wire strain gauges in nuclear power plant structures. In: Structural Mechanics in Reactor Technology, vol. 16, Washington DC, USA (2001)

    Google Scholar 

  72. Neild, S., Williams, M., McFadden, P.: Development of a vibrating wire strain gauge for measuring small strains in concrete beams. Strain 41(1), 3–9 (2005)

    Article  Google Scholar 

  73. Simon, A., Courtois, A.: Structural monitoring of prestressed concrete containments of nuclear power plants for ageing management. Struct. Mech. React. Technol. 21, 6–11 (2011)

    Google Scholar 

  74. McRae, J.B.: Borehole strainmeter. U.S. Patent No 5,585,555 (1996)

    Google Scholar 

  75. Faisal, H., Lee, S.: New pile instrumentation technique for driven and jacked-in prestressed spun concrete piles (2008)

    Google Scholar 

  76. EPRI: Program on technology innovation: retrofitted sensors for nuclear containment structures. Technical report. 3002007819. Electric Power Research Institute, Palo Alto, CA (2016)

    Google Scholar 

  77. Henault, J., Laviron, P., Desforges, S., Vautrin, D., Courtois, A., Benjamin, M., Legrix, A.: How to characterize the airtightness of containment structures. Overview of monitoring techniques tested on VeRCoRs Mock In: TINCE 2018 Conference Proceedings, Paris (2018)

    Google Scholar 

  78. Martinot, F., Martin, G., Henault, J., Moreau, G., Buchoud, E., Beck, Y., Courtois, A.: Distributed fiber optic sensors in concrete of a nuclear containment. In: Proceedings of the International Conference on Structural Health Monitoring of Intelligent Infrastructure, p. 3 (2015)

    Google Scholar 

  79. Geokon: Model 1200 (Model A4) borehole extensometer; specification. Product data sheet. Geokon (2002) https://www.geokon.com/content/datasheets/A3_A4_A5_Borehole_Extensometers.pdf

  80. Geokon: Model 1200 (Model A4) borehole extensometer; instruction manual. Technical report. Geokon (2002) https://www.geokon.com/content/manuals/1200_Borehole_Exto_Model_A4.pdf

  81. MPR: MPR-4273, Revision 0, Seabrook Station—implications of large-scale test program results on reinforced concrete affected by alkali-silica reaction, July 2016 (ML16216A242) (2016). Online; Accessed 15 Oct 2018

    Google Scholar 

  82. NextEra Energy: Seabrook, License Amendment Request 16-03—revise current licensing basis to adopt a methodology for the analysis of seismic category I structures with concrete affected by alkali-silica reaction (2016). Online. http://www.nrc.gov/docs/ML1621/ML16216A240.pdf. Accessed 11 July 2018

  83. Amberg, F., Droz, P., Leroy, R., Bremen, R.: Rapport du Comité suisse des barrages CSB sur l’état de la problématique de l’expansion du béton dans les barrages Suisses. Technical report. Swiss Committee On Large Dams (2017)

    Google Scholar 

  84. Fournier, B., Ideker, J.H., Folliard, K., Thomas, M., Nkinamubanzi, P., Chevrier, R.: Effect of environmental conditions on expansion in concrete due to alkali-silica reaction (ASR). Mater. Charact. 60(7), 669–679 (2009)

    Article  Google Scholar 

  85. Folliard, K.J., Barborak, R., Drimalas, T., Du, L., Garber, S., Ideker, J., Ley, T., Williams, S., Juenger, M., Fournier, B., Thomas, M.D.A.: Preventing ASR/DEF in new concrete Final Report. Technical report. FHWA/TX-06/0-4085-5). Center for Transportation Research

    Google Scholar 

  86. Mathieu, J.-P., Charpin, L.,Sémété, P., Toulemonde, C., Boulant, G., Hénault, J.-M., Taillade, F.: Temperature and humidity-driven ageing of the VeRCoRs mock-up. In: Computational Modelling of Concrete Structures: Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), February 26–March 1, 2018, Bad Hofgastein, Austria, p. 215. CRC Press (2018)

    Google Scholar 

  87. ACI Committee 228: ACI 228.2R-13, Report on nondestructive test methods for evaluation of concrete in structures. American Concrete Institute, Farmington Hills, Michigan, USA (2013)

    Google Scholar 

  88. Metalssi, O., Godart, B., Toutlemonde, F.: Effectiveness of nondestructive methods for the evaluation of structures affected by internal swelling reactions: a review of electric, seismic and acoustic methods based on laboratory and site experiences. Exp. Tech. 39(2), 65–76 (2015)

    Article  Google Scholar 

  89. Giannini, E., Folliard, K., Zhu, J., Bayrak, O., Kreitman, K., Webb, Z., Hanson, B.: Non-destructive evaluation of in-service concrete structures affected by alkali-silica reaction (ASR) or delayed ettringite formation (DEF)-final report, Part I. Technical report. FHWA/TX-13/0-6491-1. Federal Highway Administration (2013)

    Google Scholar 

  90. Naik, T., Malhotra, V., Popovics, J.: The ultrasonic pulse velocity method. In: Handbook on Nondestructive Testing of Concrete, pp. 182–200. CRC Press (2003)

    Google Scholar 

  91. Wiggenhauser, H., Samokrutov, A., Mayer, K., Alekhin, S., Elkin, V.: LAUS—large aperture ultrasonic system-for testing thick concrete structures. In: Proceedings of the International Symposium in Non-destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany (2015)

    Google Scholar 

  92. Clayton, D., Khazanovich, L., Salles, L.: Linear array ultrasonic test results from alkali-silica reaction (ASR) specimens. In: ORNL/TM-2016/159, Oak Ridge National Laboratory (2016)

    Google Scholar 

  93. Khazanovich, L., Freeseman, K., Salles, L., Clayton, D.: Nondestructive analysis of alkali-silica reaction damage in concrete slabs using shear waves. IAIP Conf. Proc. (AIP Publishing) 1949(1), 040003 (2018)

    Google Scholar 

  94. Henriksen, C.: Impact-echo testing. Concr. Int. 17(5), 55–58 (1995)

    Google Scholar 

  95. Mangual, J., ElBatanouny, M., Ziehl, P., Matta, F.: Corrosion damage quantification of prestressing strands using acoustic emission. J. Mater. Civ. Eng. 25(9), 1326–1334 (2012)

    Article  Google Scholar 

  96. Abdelrahman, M., ElBatanouny, M., Ziehl, P., Fasl, J., Larosche, C., Fraczek, J.: Classification of alkali-silica reaction damage using acoustic emission: a proof-of-concept study. Constr. Build. Mater. 95, 406–413 (2015)

    Article  Google Scholar 

  97. Pour-Ghaz, M., Spragg, R., Castro, J., Weiss, J.: Can acoustic emission be used to detect alkali silica reaction earlier than length change tests? In: 14th International Conference On Alkali Aggregate Reaction in Concrete, Austin, TX (2012)

    Google Scholar 

  98. Soltangharaei, V., Anay, R., Hayes, N., Assi, L., Le Pape, Y., Ma, Z., Ziehl, P.: Damage mechanism evaluation of large-scale concrete structures affected by alkali-silica reaction using acoustic emission. Appl. Sci. 8(11), 2148 (2018)

    Google Scholar 

  99. Pourahmadian, F., Guzina, B., Haddar, H.: Generalized linear sampling method for elastic-wave sensing of heterogeneous fractures. Inverse Probl. 33(5), 055007 (2017)

    Google Scholar 

  100. Pourahmadian, F., Haddar, H.: Differential imaging of evolution in elastic domains with unknown micro/macrostructure. SIAM J. Imaging Sci. (2018)

    Google Scholar 

  101. Buck, O., Morris, W., Richardson, J.: Acoustic harmonic generation at unbonded interfaces and fatigue cracks. Appl. Phys. Lett. 33(5), 371–373 (1978)

    Article  Google Scholar 

  102. Kim, G., Park, S., Kim, J., Kurtis, K., Hayes, N., Jacobs, L.: Nonlinear Rayleigh surface waves to characterize microscale damage due to alkali-silica reaction (ASR) in full-scale, nuclear concrete specimens. Construction and Building Materials 186, 1114–1118 (2018)

    Article  Google Scholar 

  103. Guyer, R., McCall, K., Van Den, K.: Slow elastic dynamics in a resonant bar of rock. Geophys. Res. Lett. 25(10), 1585–1588 (1998)

    Article  Google Scholar 

  104. Bentahar, M., El Aqra, H., El Guerjouma, R., Griffa, M., Scalerandi, M.: Hysteretic elasticity in damaged concrete: quantitative analysis of slow and fast dynamics. Phys. Rev. B 73(1), 014116 (2006)

    Google Scholar 

  105. Nagy, P.: Fatigue damage assessment by nonlinear ultrasonic materials characterization. Ultrasonics 36(1–5), 375–381 (1998)

    Article  Google Scholar 

  106. Guyer, R., Johnson, P.: Nonlinear mesoscopic elasticity: evidence for a new class of materials. Phys. Today 52, 30–36 (1999)

    Article  Google Scholar 

  107. Van Den Abeele, K., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30(9), 1453–1464 (2000)

    Article  Google Scholar 

  108. Kim, J., Jacobs, L., Qu, J., Littles, J.: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonicwaves. J. Acoust. Soc. Am. 120(3), 1266–1273 (2006)

    Article  Google Scholar 

  109. Chen, X., Kim, J., Kurtis, K., Qu, J., Shen, C., Jacobs, L.: Characterization of progressive microcracking in Portland cement mortar using nonlinear ultrasonics. NDT & E Int. 41(2), 112–118 (2008)

    Article  Google Scholar 

  110. Van Den Abeele, K., Johnson, P., Sutin, A.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part I: Nonlinear wave modulation spectroscopy (NWMS). J. Res. Nondestr. Eval. 12(1), 17–30 (2000)

    Article  Google Scholar 

  111. Kodjo, A., Rivard, P., Cohen-Tenoudji, F., Gallias, J.: Evaluation of damages due to alkali-silica reaction with nonlinear acoustics techniques. In: Proceedings of Meetings on Acoustics, vol. 7, no. 1, p. 045003. ASA (2009)

    Google Scholar 

  112. Van Den Abeele, K., Carmeliet, J., Ten Cate, J., Johnson, P.: Nonlinear elastic wave spectroscopy (NEWS) techniques to discern material damage, Part II: Single-mode nonlinear resonance acoustic spectroscopy. J. Res. Nondestr. Eval. 12(1), 31–42 (2000)

    Article  Google Scholar 

  113. Chen, J., Kim, J., Kurtis, K., Jacobs, L.: Theoretical and experimental study of the nonlinear resonance vibration of cementitious materials with an application to damage characterization. J. Acoust. Soc. Am. 130(5), 2728–2737 (2011)

    Article  Google Scholar 

  114. Leśnicki, K.J., Kim, J., Kurtis, K., Jacobs, L.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. NDT & E Int. 44(8), 721–727 (2011)

    Google Scholar 

  115. Sanchez, L., Fournier, B., Jolin, M., Bastien, J.: Evaluation of the stiffness damage test (SDT) as a tool for assessing damage in concrete due to ASR: input parameters and variability of the test responses. Constr. Build. Mater. 77, 20–32 (2015)

    Article  Google Scholar 

  116. Quiviger, A., Payan, C., Chaix, J., Garnier, V., Salin, J.: Effect of the presence and size of a real macro-crack on diffuse ultrasound in concrete. NDT & E Int. 45(1), 128–132 (2012)

    Article  Google Scholar 

  117. Quiviger, A., Girard, A., Payan, C., Chaix, J., Garnier, V., Salin, J.: Influence of the depth and morphology of real cracks on diffuse ultrasound in concrete: a simulation study. NDT & E Int. 60, 11–16 (2013)

    Article  Google Scholar 

  118. Larose, E., Hall, S.: Monitoring stress related velocity variation in concrete with a 2\_ 10–5 relative resolution using diffuse ultrasound. J. Acoust. Soc. Am. 125(4), 1853–1856 (2009)

    Article  Google Scholar 

  119. Larose, E., Obermann, A., Digulescu, A., Planes, T., Chaix, J., Mazerolle, F., Moreau, G.: Locating and characterizing a crack in concrete with diffuse ultrasound: a four-point bending test. J. Acoust. Soc. Am. 138(1), 232–241 (2015)

    Article  Google Scholar 

  120. Payan, C., Garnier, V., Moysan, J., Johnson, P.: Determination of third order elastic constants in a complex solid applying coda wave interferometry. Appl. Phys. Lett. 94(1), 011904 (2009)

    Google Scholar 

  121. Kaczmarek, M., Piwakowski, B., Drelich, R.: Noncontact ultrasonic nondestructive techniques: state of the art and their use in civil engineering. J. Infrastruct. Syst. 23(1), B4016003 (2016)

    Google Scholar 

  122. Kim, G., Giannini, E., Klenke, N., Kim, J., Kurtis, K., Jacobs, L.: Measuring alkali-silica reaction (ASR) microscale damage in large-scale concrete slabs using nonlinear Rayleigh surface waves. J. Nondestr. Eval. 36(2), 29 (2017)

    Google Scholar 

  123. Thomas, M., Folliard, K., Fournier, B., Rivard, P., Drimalas, T.: Methods for evaluating and treating ASR-affected structures: results of field application and demonstration projects-Volume I: Summary of findings and recommendations. Technical report. Report No. FHWA-HIF-14-0002. Federal Highway Administration (2013)

    Google Scholar 

  124. NRC: In situ Monitoring of Alkali-Silica Reaction (ASR) affected concrete: a study on crack indexing and damage rating index to assess the severity of ASR and to monitor ASR progression. Technical report. ML13108A047. US-Nuclear Regulatory Commission, Position paper (2013)

    Google Scholar 

  125. Godart, B., Fasseu, P., Michel, M.: Diagnosis and monitoring of concrete bridges damaged by AAR in Northern France. In: The Ninth International Conference On Alkali-Aggregate Reaction In Concrete, London, pp. 368–375 (1992)

    Google Scholar 

  126. Kabir, S., Rivard, P., Ballivy, G.: Neural-network-based damage classification of bridge infrastructure using texture analysis. Can. J. Civ. Eng. 35(3), 258–267 (2008)

    Article  Google Scholar 

  127. Clayton, D., Cyrus, S.: Research in nondestructive evaluation techniques for nuclear concrete structures. In: 40th Annual Review of Progress in Quantitative Nondestructive Evaluation, AIP Publishing, AIP Conference Proceedings, pp. 962–969 (2014)

    Google Scholar 

  128. Kurtis, K., Xi, Y., Glinicki, M., Provis, J., Giannini, E., Fu, T.: Can we design concrete to survive nuclear environments? Concr. Int. 39, 29–35 (2017)

    Google Scholar 

  129. Gocevski, V.: Pathologies/degradation mechanisms experienced by Hydro-Quebec during the evaluation of Gentilly-2 NPP (2015)

    Google Scholar 

  130. Danay, A., Adeghe, L., Hindy, A.: Diagnosis of the cause of the progressive concrete deformations at Saunders dam. Concr. Int. 15(9), 25–33 (1993)

    Google Scholar 

  131. Gross, M., Vozel, J., Mochrie, B., Schadinger, S., Shiers, P.: Remediation measures implemented to resolve gate operation difficulties related to spillway deck concrete expansion. In: 31st Annual USSD Conference, San Diego, CA, USA, pp. 705–720 (2011)

    Google Scholar 

  132. Conde-Carnero, B., Riveiro, B., Arias, P., Caamaño, J.: Exploitation of geometric data provided by laser scanning to create FEM structural models of bridges. J. Perform. Constr. Facil. 30(3), 04015053 (2015)

    Google Scholar 

  133. Truong-Hong, L., Falter, H., Lennon, D., Laefer, D.: Framework for bridge inspection with laser scanning. In: EASEC-14 Structural Engineering and Construction, Ho Chi Minh City, Vietnam, 6–8 January 2016 (2016)

    Google Scholar 

  134. Turkan, Y., Laflamme, S., Tan, L.: Terrestrial laser scanning-based bridge structural condition assessment, pp. 1–38 (2016)

    Google Scholar 

  135. Ellenberg, A., Branco, L., Krick, A., Bartoli, I., Kontsos, A.: Use of unmanned aerial vehicle for quantitative infrastructure evaluation. J. Infrastruct. Syst. 21(3), 04014054 (2014)

    Google Scholar 

  136. Chan, B., Guan, H., Jo, J., Blumenstein, M.: Towards UAV-based bridge inspection systems: a review and an application perspective. Struct. Monitor. Maint. 2(3), 283–300 (2015)

    Google Scholar 

  137. Irizarry, J., Costa, D.: Exploratory study of potential applications of unmanned aerial systems for construction management tasks. J. Manag. Eng. 32(3), 05016001 (2016)

    Google Scholar 

  138. Mader, D., Blaskow, R., Westfeld, P., Weller, C.: Potential of UAV-based laser scanner and multispectral camera data in building inspection. Inte. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 41, 1135–1142 (2016)

    Article  Google Scholar 

  139. Gillins, M.: Unmanned aircraft systems for bridge inspection: testing and developing end-to-end operational workflow (2016)

    Google Scholar 

  140. Gheisari, M., Irizarry, J.: A user-centered approach to investigate unmanned aerial system (UAS) requirements for a department of transportation applications. In: Conference on Autonomous and Robotic Construction of Infrastructure, p. 85 (2015)

    Google Scholar 

  141. Seo, J., Duque, L., Wacker, J.: Drone-enabled bridge inspection methodology and application. Autom. Constr. 94, 112–126 (2018)

    Article  Google Scholar 

  142. Al-Shalabi, F., Turkan, Y., Laflamme, S.: BrIM implementation for documentation of bridge condition for inspection. In: Proceedings of the Canadian Society for Civil Engineering 5th International/11th Construction Specialty Conference,University of British Columbia, Vancouver, Canada, June 2015, pp. 7–10 (2015)

    Google Scholar 

  143. McGuire, B., Atadero, R., Clevenger, C., Ozbek, M.: Bridge information modeling for inspection and evaluation. J. Bridge Eng. 21(4), 04015076 (2016)

    Google Scholar 

  144. Costin, A.: A new methodology for interoperability of heterogeneous bridge information models. Ph.D thesis. Georgia Institute of Technology (2016)

    Google Scholar 

  145. McKenna, T., Minehane, M., O’Keeffe, B., O’Sullivan, G., Ruane, K.: Bridge information modelling (BrIM) for a listed viaduct. In: Proceedings of the Institution of Civil Engineers-Bridge Engineering, vol. 170, no. 3, pp. 192–203. Thomas Telford Ltd. (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Giannini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 RILEM

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Courtois, A. et al. (2021). Field Assessment of ASR-Affected Structures. In: Saouma, V.E. (eds) Diagnosis & Prognosis of AAR Affected Structures. RILEM State-of-the-Art Reports, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-44014-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44014-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44013-8

  • Online ISBN: 978-3-030-44014-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics