Skip to main content

A Constructive Review Regarding the Significance of 5G Networks for the Internet of Things

  • Conference paper
  • First Online:
Web, Artificial Intelligence and Network Applications (WAINA 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1150))

  • 2354 Accesses

Abstract

The paradigm of the Internet of Things seems to become the backbone of the future always connected world. The current 4G mobile infrastructures have been consistently used during the initial stages of the Internet of Things’ (IoT) evolution, but they seem not to satisfy all the speed and capacity requirements. Thus, the 5G mobile networks are expected to significantly improve the today’s 4G networks capabilities, which makes them essential for the future networks of always connected IoT devices. The efforts to expand the capabilities of the 5G technology take several pathways. Thus, this paper presents the state-of-the-art concerning the development of 5G in the context of IoT networks. It reviews the current research contributions, the essential founding technologies, and it also suggests the main research avenues and challenges that may have an impact on the development of 5G IoT networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Egham, U.K.: Gartner Says 8.4 Billion Connected “Things” Will Be in Use in 2017, Up 31 Percent From 2016. https://www.gartner.com/newsroom/id/3598917

  2. Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., Hanzo, L.: Non-orthogonal multiple access for 5G and beyond. In: Proceedings of IEEE (2018)

    Google Scholar 

  3. I-Scoop: 5G and IoT in 2018 and beyond: the mobile broadband future of IoT. https://www.i-scoop.eu/internet-of-things-guide/5g-iot/

  4. Simsek, M., Aijaz, A., Dohler, M., Sachs, J., Fettweis, G.: 5G-enabled tactile Internet. IEEE J. Sel. Areas Commun. 34(3), 460–473 (2016)

    Google Scholar 

  5. Jaiswal, N., Mason, A.: 5G: continuous evolution leads to quantum shift. https://www.telecomasia.net/content/5g-continuous-evolution-leads-quantum-shift

  6. Bridgera: 5G promises new horizons for IoT solutions. https://bridgera.com/5g-promises-new-horizons-for-iot/

  7. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G Networks for the Internet of Things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2017)

    Google Scholar 

  8. Akyildiz, I.F., Nie, S., Lin, S.-C., Chandrasekaran, M.: 5G roadmap: 10 key enabling technologies. Comput. Netw. 106, 17–48 (2016)

    Google Scholar 

  9. Nunez, M.: What is 5G and how will it make my life better? https://gizmodo.com/what-is-5g-and-how-will-it-make-my-life-better-1760847799

  10. The Tech Wire Asia: The next generation of IoT. http://techwireasia.com/2017/08/next-generation-iot/

  11. The Internet of all things: Nokia networks to power Internet of Things with 5G connectivity. https://theinternetofallthings.com/nokia-networks-to-power-internet-of-things-with-5g-connectivity-2015-02-19/

  12. Parvez, I., Rahmati, A., Guvenc, I., Sarvat, A.I., Dai, H.: A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Commun. Surv. Tutor. 20(4), 3098–3130 (2018)

    Google Scholar 

  13. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engineering in SDN-openflow networks. Comput. Netw. J. 71, 1–30 (2014)

    Google Scholar 

  14. Akyildiz, I.F., Wang, P., Lin, S.C.: SoftAir: a software defined networking architecture for 5G wireless systems. Comput. Netw. 85(C), 1–18 (2015)

    Google Scholar 

  15. Xia, X., Xu, K., Wang, Y., Xu, Y.: A 5G-enabling technology: benefits, feasibility, and limitations of in-band full-duplex mMIMO. IEEE Veh. Technol. Mag. 13(3), 81–90 (2018)

    Google Scholar 

  16. Wu, J., Zhang, Z., Hong, Y., Wen, Y.: Cloud radio access network (C-RAN): a primer. IEEE Netw. 29(1), 35–41 (2015)

    Google Scholar 

  17. Project CONTENT FP, 2012–2015. http://cordis.europa.eu/fp7/ict/future-networks/

  18. SDX Central: How 5G NFV will enable the 5G future. https://www.sdxcentral.com/5g/definitions/5g-nfv/

  19. Da Li, X., He, W., Li, S.: Internet of Things in industries: a survey. IEEE Trans. Ind. Inform. 10(4), 2233–2243 (2014)

    Google Scholar 

  20. Kaplan, K.: Will 5G wireless networks make every internet thing faster and smarter? https://qz.com/179794/will-5g-wireless-networks-make-every-internet-thing-faster-and-smarter/

  21. Hosek, J.: Enabling technologies and user perception with integrated 5G-IoT ecosystem (2016)

    Google Scholar 

  22. Chen, M., Qian, Y., Hao, Y., Li, Y., Song, J.: Data-driven computing and caching in 5G networks: architecture and delay analysis. IEEE Wirel. Commun. 25(1), 70–75 (2018)

    Google Scholar 

  23. Stephan, J., Krishnamurthy, K.: Understanding the industrial Internet of Things. http://usblogs.pwc.com/emerging-technology/understanding-the-industrial-internet-of-things/

  24. BLE: Smart bluetooth low energy. http://www.bluetooth.com/Pages/Bluetooth-Smart.aspx

  25. Taylor, L.A.: Zigbee, Interconnecting Zigbee & M2M Networks. In: ETSI M2M Workshop, Sophia-Antipolis, pp. 1–18 (2011)

    Google Scholar 

  26. Nokia: LTE evolution for IoT connectivity. Nokia, Tech. rep. 2016, Nokia White Paper, pp. 1–18 (2016)

    Google Scholar 

  27. RPMA: RPMA technology for the Internet of Things. Ingenu, Tech. rep. (2016)

    Google Scholar 

  28. SigFox: SigFox. http://www.sigfox.com

  29. Vangelista, L., Zanella, A., Zorzi, M.: Long-range IoT technologies: the dawn of LoRa. In: Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 51–58. Springer (2015)

    Google Scholar 

  30. Costanzo, A., Masotti, D.: Energizing 5G. IEEE Microw. Mag. 18(3), 125–136 (2017)

    Google Scholar 

  31. Schinianakis, D.: Alternative security options in the 5G and IoT era. IEEE Circ. Syst. Mag. 17(4), 6–28 (2017)

    Google Scholar 

  32. Boulogeorgos, A.-A.A., et al.: Terahertz technologies to deliver optical network quality of experience in wireless systems beyond 5G. IEEE Commun. Mag. 56(6), 144–151 (2018)

    Google Scholar 

  33. Khal, B., Hamdaoui, B., Guizani, M.: Extracting and exploiting inherent sparsity for efficient IoT support in 5G: challenges and potential solutions. IEEE Wirel. Commun. 24(5), 68–73 (2017)

    Google Scholar 

  34. Xu, L., Collier, R., O’Hare, G.M.P.: A survey of clustering techniques in WSNs and consideration of the challenges of applying such to 5G IoT scenarios. IEEE Internet Things J. 4(5), 1229–1249 (2017)

    Google Scholar 

  35. Sekander, S., Tabassum, H., Hossain, E.: Multi-tier drone architecture for 5G/B5G cellular networks: challenges, trends, and prospects. IEEE Commun. Mag. 56(3), 96–103 (2018)

    Google Scholar 

  36. Zhang, D., Zhou, Z., Mumtaz, S., Rodriguez, J., Sato, T.: One integrated energy eciency proposal for 5G IoT communications. IEEE Internet Things J. 3(6), 1346–1354 (2016)

    Google Scholar 

  37. Duan, P., et al.: Space-reserved cooperative caching in 5G heterogeneous networks for industrial IoT. IEEE Trans. Ind. Inform. 14(6), 2715–2724 (2018)

    Google Scholar 

  38. Chen, X., Liu, S., Lu, J., Fan, P., Letaief, K.B.: Smart channel sounder for 5G IoT: from wireless big data to active communication. IEEE Access 4, 8888–8899 (2016)

    Google Scholar 

  39. Vukobratovic, D., Jakovetic, D., et al.: CONDENSE: a reconfigurable knowledge acquisition architecture for future 5G IoT. IEEE Access 4, 3360–3378 (2016)

    Google Scholar 

  40. Wang, Q., Chen, D., Zhang, N., Qin, Z., Qin, Z.: LACS: a lightweight label-based access control scheme in IoT-based 5G caching context. IEEE Access 5, 4018–4027 (2017)

    Google Scholar 

  41. Condoluci, M., Araniti, G., Mahmoodi, T., Dohler, M.: Enabling the IoT machine age with 5G: machine-type multicast services for innovative real-time applications. IEEE Access 4, 5555–5569 (2016)

    Google Scholar 

  42. Schulz, P., Matthe, M., et al.: Latency critical IoT applications in 5G: perspective on the design of radio interface and network architecture. IEEE Commun. Mag. 55(2), 70–78 (2017)

    Google Scholar 

  43. Saxena, N., Roy, A., Sahu, B.J.R., Kim, H.: Efficient IoT gateway over 5G wireless: a new design with prototype and implementation results. IEEE Commun. Mag. 55(2), 97–105 (2017)

    Google Scholar 

  44. Burg, A., Chattopadhyay, A., Lam, K.-Y.: Wireless communication and security issues for cyberphysical systems and the Internet-of-Things. Proc. IEEE 106(1), 38–60 (2018)

    Google Scholar 

  45. Szymanski, T.H.: Security and privacy for a green Internet of Things. IT Prof. 19(5), 34–41 (2017)

    Google Scholar 

  46. Cao, N., Nasir, S.B., Sen, S., Raychowdhury, A.: Self-optimizing IoT wireless video sensor node with in-situ data analytics and context-driven energy-aware real-time adaptation. IEEE Trans. Circ. Syst. I Regul. Pap. 64(9), 2470–2480 (2017)

    Google Scholar 

  47. Masotti, D.: A novel time-based beamforming strategy for enhanced localization capability. IEEE Antennas Wirel. Propag. Lett. 16, 2428–2431 (2017)

    Google Scholar 

  48. van Lingen, F., Yannuzzi, M., Jain, A., et al.: The unavoidable convergence of NFV, 5G, and fog: a model-driven approach to bridge cloud and edge. IEEE Commun. Mag. 55(8), 28–35 (2017)

    Google Scholar 

  49. Vilalta, R., Mayoral, A., Casellas, R., Martinez, R., Verikoukis, C., Munoz, R.: TelcoFog: a unified flexible fog and cloud computing architecture for 5G networks. IEEE Commun. Mag. 55(8), 36–43 (2017)

    Google Scholar 

  50. Ali, K.T., Rejeb, S.B., Choukair, Z.: A congestion control approach based on dynamic ACB of differentiated M2M services in 5G/HetNet. In: 13th International on Wireless Communications and Mobile Computing Conference (IWCMC), 26–30 (July 2017)

    Google Scholar 

  51. Hasan, M., Hossain, E.: Random access for machine-to-machine communication in LTE advanced networks: issues and approaches. IEEE Commun. Mag. 51, 86–93 (2013)

    Google Scholar 

  52. Ge, X., Cheng, H., Guizani, M., Han, T.: 5G wireless backhaul networks: challenges and research advances. IEEE Netw. 28(6), 6–11 (2014)

    Google Scholar 

  53. Antonakoglou, K., et al.: Toward haptic communications over the 5G tactile Internet. IEEE Commun. Surv. Tutor. 20(4), 3034–3059 (2018)

    Google Scholar 

  54. Blyler, J.: Top 5 RF technologies for 5G in the IoT. http://www.mwrf.com/systems/top-5-rf-technologies-5g-iot

  55. Lei, K., Zhong, S., Zhu, F., Kuai, X., Zhang, H.: An NDN IoT content distribution model with network coding enhanced forwarding strategy for 5G. IEEE Trans. Ind. Inform 14(6), 2725–2735 (2017)

    Google Scholar 

  56. Ejaz, W., Ibnkahla, M.: Multi-band spectrum sensing and resource allocation for IoT in cognitive 5G networks. IEEE Internet Things J 5(1), 150–163 (2017)

    Google Scholar 

  57. Tang, J., So, D.K., Zhao, N., Shojaeifard, A., Wong, K.-K.: Energy efficiency optimization with SWIPT in MIMO broadcast channels for Internet of Things. IEEE Internet Things J. 5(4), 2605–2619 (2017)

    Google Scholar 

  58. Mind Commerce Staff: The convergence of 5G Artificial Intelligence, Data Analytics, and Internet of Things. https://blog.marketresearch.com/the-convergence-of-5g-artificial-intelligence-data-analytics-and-internet-of-things

  59. Girson, A.: IoT has a security problem, will 5G solve it? https://www.wirelessweek.com/article/2017/03/iot-has-security-problem-will-5g-solve-it

  60. Morgado, A., Huq, K.M.S., Mumtaz, S., Rodriguez, J.: A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digital Commun. Netw. 4(2), 87–97 (2017)

    Google Scholar 

  61. Pereira, C., Aguiar, A.: Towards efficient mobile M2M communications: survey and open challenges. Sensors 14(10), 19582–19608 (2014)

    Google Scholar 

  62. Biral, A., Centenaro, M., Zanella, A., Vangelista, L., Zorzi, M.: The challenges of M2M massive access in wireless cellular networks. Digit. Commun. Netw. 1(1), 1–19 (2015)

    Google Scholar 

  63. Ghavimi, F., Chen, H.-H.: M2M communications in 3GPP LTE/LTE-A networks: architectures, service requirements, challenges, and applications. IEEE Commun. Surv. Tutor. 17(2), 525–549 (2015)

    Google Scholar 

  64. Condoluci, M., Dohler, M., Araniti, G., Molinaro, A., Zheng, K.: Toward 5G densenets: architectural advances for effective machine-type communications over femtocells. IEEE Commun. Mag. 53(1), 134–141 (2015)

    Google Scholar 

  65. Dawy, Z., Saad, W., Ghosh, A., Andrews, J.G., Yaacoub, E.: Towards massive machine type cellular communications. arXiv preprint arXiv:1512.03452 (2015)

  66. GSA: The road to 5G: drivers, applications, requirements and technical development” arXiv preprint arXiv:1512.03452 (2015)

  67. Ibbetson, L.: Existing network evolution will deliver 5G benefits for Internet of Things. http://www.vodafone.com/content/index/about/what/technology-blog/2015/02/vodafone-extendsits.html

  68. GPP: NarrowBand IOT. http://www.3gpp.org/news-events/3gpp-news/1733-niot

  69. Ndiaye, M., Hancke, G.P., Abu-Mahfouz, A.M.: Software defined networking for improved wireless sensor network management: a survey. Sensors 17(5), 1–32 (2017)

    Google Scholar 

  70. Modieginyane, K.M., Letswamotse, B.B., Malekian, R., Abu-Mahfouz, A.M.: Software defined wireless sensor networks application opportunities for efficient network management: a survey. Comput. Electr. Eng. 66, 1–14 (2017)

    Google Scholar 

  71. Elkhodr, M., Shahrestani, S., Cheung, H.: The Internet of Things: new interoperability, management and security challenges. arXiv preprint arXiv:1604.04824 (2016)

  72. Ishaq, I., et al.: IETF standardization in the field of the Internet of Things (IoT): a survey. J. Sens. Actuator Netw. 2(2), 235–287 (2013)

    Google Scholar 

  73. Liu, J., Kato, N., Ma, J., Kadowaki, N.: Device-to-device communication in LTE-advanced networks: A survey. IEEE Commun. Surv. Tutor. 17(4), 1923–1940 (2015)

    Google Scholar 

  74. Gringoli, F., et al.: Performance assessment of open software platforms for 5G prototyping. IEEE Wirel. Commun. 25(5), 10–15 (2018)

    Google Scholar 

  75. Mach, P., Becvar, Z., Vanek, T.: In-band device-to-device communication in OFDMA cellular networks: a survey and challenges. IEEE Commun. Surv. Tutor. 17(4), 1885–1922 (2015)

    Google Scholar 

  76. Pyattaev, A., Hosek, J., Johnsson, K., et al.: 3GPP LTE-assisted Wi-Fi direct: trial implementation of live D2D technology. ETRI J. 37(5), 1–14 (2015)

    Google Scholar 

  77. Talwar, S., Choudhury, D., Dimou, K., Aryafar, E., Bangerter, B.: Enabling technologies and architectures for 5G wireless. In: IMS2014 Symposium (2014)

    Google Scholar 

  78. IoT Standardization. https://iot.ieee.org/newsletter/july-2016/iot-standardization-and-implementation-challenges.html

  79. Palattella, M., Dohler, M., Grieco, A., et al.: Internet of Things in the 5G era: enablers, architecture and business models. IEEE J. Sel. Areas Commun. 34(3), 510–527 (2016)

    Google Scholar 

  80. Astely, D., Dahlman, E., Fodor, G., et al.: LTE release 12 and beyond. IEEE Commun. Mag. 51(7), 154–160 (2013)

    Google Scholar 

  81. Dongbaare, P., Chowdhury, S.D., Olwal, T.O., Abu-Mahfouz, A.M.: Smart energy management system based on an automayed distributed load limiting mechanism and multi-power switching technique. In: 51st International Universities’ Power Engineering Conference (2016)

    Google Scholar 

  82. Abu-Mahfouz, A.M., Hamam, Y., Page, P.R., Djouani, K., Kurien, A.: Real-time dynamic hydraulic model for potable water loss reduction. Procedia Eng. 154(8), 99–106 (2016)

    Google Scholar 

  83. Yongfu, L., Dihua, S., Weining, L., Xuebo, Z.: A service-oriented architecture for the transportation cyber-physical systems. In: IEEE 31st Chinese Control Conference (CCC), pp. 7674–7678 (2012)

    Google Scholar 

  84. Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through Internet of Things. IEEE Internet Things J. 1(2), 112–121 (2014)

    Google Scholar 

  85. Zhao, S., Le, Yu., Cheng, B.: An event-driven service provisioning mechanism for IoT (Internet of Things) system interaction. IEEE Access 4(2), 5038–5051 (2016)

    Google Scholar 

  86. Linge, N., Odum, R., Hill, S., Von-Hunerbein, S., Linnebank, P., Sutton, A., Townend, D.: The impact of atmospheric pressure on the performance of 60 GHz point to point links within 5G networks. In: Loughborough Antennas & Propagation Conference (2018)

    Google Scholar 

  87. Habiba, U., Hossain, E.: Auction mechanisms for virtualization in 5G cellular networks: basics, trends, and open challenges. IEEE Commun. Surv. Tutor. 20(3), 2264–2293 (2018)

    Google Scholar 

  88. Bocu, R., Costache, C.: A homomorphic encryption-based system for securely managing personal health metrics data. IBM J. Res. Dev. 62(1), 1:1–1:10 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razvan Bocu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bocu, R. (2020). A Constructive Review Regarding the Significance of 5G Networks for the Internet of Things. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds) Web, Artificial Intelligence and Network Applications. WAINA 2020. Advances in Intelligent Systems and Computing, vol 1150. Springer, Cham. https://doi.org/10.1007/978-3-030-44038-1_26

Download citation

Publish with us

Policies and ethics