Skip to main content

Therapeutic Considerations with Revascularization in Chronic Kidney Disease: Radial Versus Femoral Arterial Access

  • Chapter
  • First Online:
Kidney Disease in the Cardiac Catheterization Laboratory

Abstract

The radial artery is a safe and feasible access site to perform cardiac catheterization and percutaneous coronary intervention (PCI) in stable and unstable settings. Recent evidence suggests potential nephroprotective benefits of the radial approach over the femoral route toward both short- and long-term kidney injury preventions. Acute kidney injury (AKI) after cardiac catheterization remains a major issue in hospitalized patients and is associated with worse clinical outcomes. Patients with chronic kidney disease (CKD) are more prone to AKI after cardiac catheterization, requiring careful management to prevent further decline in renal function. The transradial approach (TRA) provides several advantages for renal safety compared to the transfemoral approach (TFA) which include less access site-related bleeding and the avoidance of manipulation of the atheromatous aorta, thus limiting renal atheroembolic events. On the other hand, the extensive use of TRA in patients with advanced CKD has been questioned, raising concerns about the use of previously cannulated radial arteries for the creation of future autogenous radial-cephalic fistulae for hemodialysis access. Several studies have reported conflicting data regarding the use of contrast-associated AKI with TRA, possibly counterbalancing the potential benefits of this approach. In this chapter, we discuss benefits and limits of the transradial strategy in patients undergoing cardiac catheterization, with emphasis on patients with CKD and data on renal safety with this approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AKI:

Acute kidney injury

AV:

Arteriovenous

CI:

Confidence interval

CABG:

Coronary artery bypass grafting

CIN:

Contrast-induced nephropathy

CKD:

Chronic kidney disease

eGFR:

Estimated glomerular filtration rate

MATRIX:

Minimizing Adverse Haemorrhagic Events by Transradial Access Site and Systemic Implementation of AngioX

PCI:

Percutaneous coronary intervention

sCr:

Serum creatinine

TFA:

Transfemoral approach

TRA:

Transradial approach

References

  1. Campeau L. Percutaneous radial artery approach for coronary angiography. Catheter Cardiovasc Diagn. 1989;16(1):3–7.

    CAS  Google Scholar 

  2. Valgimigli M, Gagnor A, Calabró P. Radial versus femoral access in patients with acute coronary syndromes undergoing invasive management: a randomised multicentre trial. Lancet. 2015;385(9986):2465–76.

    PubMed  Google Scholar 

  3. Kooiman J, Seth M, Dixon S, et al. Risk of acute kidney injury after percutaneous coronary interventions using radial versus femoral vascular access insights from the blue cross blue shield of Michigan cardiovascular consortium. Circ Cardiovasc Interv. 2014;7(2):190–8.

    PubMed  Google Scholar 

  4. Jolly SS, Yusuf S, Cairns J, et al. Radial versus femoral access for coronary angiography and intervention in patients with acute coronary syndromes (RIVAL): a randomised, parallel group, multicentre trial. Lancet. 2011;377(9775):1409–20.

    PubMed  Google Scholar 

  5. Rigattieri S, Valsecchi O, Sciahbasi A, et al. Current practice of transradial approach for coronary procedures: a survey by the Italian Society of Interventional Cardiology (SICI-GISE) and the Italian Radial Club. Cardiovasc Revascularization Med. 2017;18(3):154–9.

    Google Scholar 

  6. Feldman DN, Swaminathan RV, Kaltenbach LA, et al. Adoption of radial access and comparison of outcomes to femoral access in percutaneous coronary intervention: an updated report from the National Cardiovascular Data Registry (2007-2012). Circulation. 2013;127(23):2295–306.

    PubMed  Google Scholar 

  7. Bianchi R, D’Acierno L, Crisci M, et al. From femoral to radial approach in coronary intervention: review of the literature and 6 years single-center experience. Angiology. 2017;68(4):281–7.

    PubMed  Google Scholar 

  8. Rihal CS. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259–64.

    PubMed  Google Scholar 

  9. Best PJ, Lennon R, Ting HH, et al. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2002;39(7):1113–9.

    PubMed  Google Scholar 

  10. Andò G, Cortese B, Russo F, et al. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKI-MATRIX. J Am Coll Cardiol. 2017;69(21):2592–603.

    Google Scholar 

  11. KDIGO. Clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2(1):1.

    Google Scholar 

  12. Vuurmans T, Byrne J, Fretz E, et al. Chronic kidney injury in patients after cardiac catheterisation or percutaneous coronary intervention: a comparison of radial and femoral approaches (from the British Columbia cardiac and renal registries). Heart. 2010;96(19):1538–42.

    PubMed  Google Scholar 

  13. Freeman RV, O’Donnell M, Share D, et al. Nephropathy requiring dialysis after percutaneous coronary intervention and the critical role of an adjusted contrast dose. Am J Cardiol. 2002;90(10):1068–73.

    PubMed  Google Scholar 

  14. Maioli M, Toso A, Leoncini M, Gallopin M, Musilli N, Bellandi F. Persistent renal damage after contrast-induced acute kidney injury: incidence, evolution, risk factors, and prognosis. Circulation. 2012;125(25):3099–107.

    PubMed  Google Scholar 

  15. Nikolsky E, Mehran R, Lasic Z, et al. Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int. 2005;67(2):706–13.

    PubMed  Google Scholar 

  16. McDonald JS, McDonald RJ, Comin J, et al. Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis. Radiology. 2013;267(1):119–28.

    PubMed  Google Scholar 

  17. Wichmann JL, Katzberg RW, Litwin SE, et al. Contrast-induced nephropathy. Circulation. 2015;132(20):1931–6.

    PubMed  Google Scholar 

  18. Dong M, Jiao Z, Liu T, Guo F, Li G. Effect of administration route on the renal safety of contrast agents: a meta-analysis of randomized controlled trials. J Nephrol. 2012;25(3):290–301.

    CAS  PubMed  Google Scholar 

  19. Iakovou I, Dangas G, Mehran R, et al. Impact of gender on the incidence and outcome of contrast-induced nephropathy after percutaneous coronary intervention. J Invasive Cardiol. 2003;15(1):18–22.

    PubMed  Google Scholar 

  20. Ibanez B, James S, Agewall S, et al. ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2017; 2017.

    Google Scholar 

  21. 2014 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2014;35(37):2541–2619.

    Google Scholar 

  22. Brar SS, Aharonian V, Mansukhani P, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet. 2014;383(9931):1814–23.

    PubMed  Google Scholar 

  23. McCullough PA, Choi JP, Feghali GA, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68(13):1465–73.

    PubMed  Google Scholar 

  24. Mariani J, Guedes C, Soares P, et al. Intravascular ultrasound guidance to minimize the use of iodine contrast in percutaneous coronary intervention. JACC Cardiovasc Interv. 2014;7(11):1287–93.

    PubMed  PubMed Central  Google Scholar 

  25. Andò G, De Gregorio C, Morabito G, Trio O, Saporito F, Oreto G. Renal function-adjusted contrast volume redefines the baseline estimation of contrast-induced acute kidney injury risk in patients undergoing primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2014;7(4):465–72.

    PubMed  Google Scholar 

  26. Ali ZA, Galougahi KK, Nazif T, et al. Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study. Eur Heart J. 2016;37(40):3090–5.

    PubMed  PubMed Central  Google Scholar 

  27. Marenzi G, Ferrari C, Marana I, et al. Prevention of contrast nephropathy by furosemide with matched hydration. JACC Cardiovasc Interv. 2012;5(1):90–7.

    PubMed  Google Scholar 

  28. Giacoppo D, Capodanno D, Capranzano P, Aruta P, Tamburino C. Meta-analysis of randomized controlled trials of preprocedural statin administration for reducing contrast-induced acute kidney injury in patients undergoing coronary catheterization. Am J Cardiol. 2014;114(4):541–8.

    CAS  PubMed  Google Scholar 

  29. Bainey KR, Rahim S, Etherington K, et al. Effects of withdrawing vs continuing renin-angiotensin blockers on incidence of acute kidney injury in patients with renal insufficiency undergoing cardiac catheterization: results from the angiotensin converting enzyme inhibitor/angiotensin receptor bloc. Am Heart J. 2015;170(1):110–6.

    CAS  PubMed  Google Scholar 

  30. Andò G, Cortese B, Frigoli E, et al. Acute kidney injury after percutaneous coronary intervention: rationale of the AKI-MATRIX (acute kidney injury-minimizing adverse hemorrhagic events by TRansradial access site and systemic implementation of angioX) sub-study. Catheter Cardiovasc Interv. 2015;86(5):950–7.

    PubMed  Google Scholar 

  31. Ohno Y, Maekawa Y, Miyata H, et al. Impact of periprocedural bleeding on incidence of contrast-induced acute kidney injury in patients treated with percutaneous coronary intervention. J Am Coll Cardiol. 2013;62(14):1260–6.

    PubMed  Google Scholar 

  32. Lutz J, Menke J, Sollinger D, Schinzel H, Thürmel K. Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 2014;29(1):29–40.

    CAS  PubMed  Google Scholar 

  33. Karrowni W, Vora AN, Dai D, Wojdyla D, Dakik H, Rao SV. Blood transfusion and the risk of acute kidney injury among patients with acute coronary syndrome undergoing percutaneous coronary intervention. Circ Cardiovasc Interv. 2016;9(9):e003279.

    PubMed  Google Scholar 

  34. Roy P, Raya V, Okabe T, et al. Incidence, predictors, and outcomes of post-percutaneous coronary intervention nephropathy in patients with diabetes mellitus and normal baseline serum creatinine levels. Am J Cardiol. 2008;101(11):1544–9.

    CAS  PubMed  Google Scholar 

  35. Chase AJ, Fretz EB, Warburton WP, et al. Association of the arterial access site at angioplasty with transfusion and mortality: the M.O.R.T.A.L study (mortality benefit of reduced transfusion after percutaneous coronary intervention via the arm or leg). Heart. 2008;94(8):1019–25.

    CAS  PubMed  Google Scholar 

  36. Fukumoto Y, Tsutsui H, Tsuchihashi M, Masumoto A, Takeshita A. Cholesterol Embolism Study(CHEST) Investigators. The incidence and risk factors of cholesterol embolization syndrome, a complication of cardiac catheterization: a prospective study. J Am Coll Cardiol. 2003;42(2):211–6.

    PubMed  Google Scholar 

  37. Saklayen MG, Gupta S, Suryaprasad A, Azmeh W, Saklayen MG. Incidence of Atheroembolic renal failure after coronary angiography. Angiology. 1997;48(7):609–13.

    CAS  PubMed  Google Scholar 

  38. Scolari F, Ravani P, Gaggi R, et al. The challenge of diagnosing Atheroembolic renal disease: clinical features and prognostic factors. Circulation. 2007;116(3):298–304.

    PubMed  Google Scholar 

  39. Bashore TM, Gehrig T. Cholesterol emboli after invasive cardiac procedures∗∗editorials published in the journal of the American College of Cardiologyreflect the views of the authors and do not necessarily represent the views of JACCor the American College of Cardiology. J Am Coll Cardiol. 2003;42(2):217–8.

    PubMed  Google Scholar 

  40. Karalis DG, Quinn V, Victor MF, et al. Risk of catheter-related emboli in patients with atherosclerotic debris in the thoracic aorta. Am Heart J. 1996;131(6):1149–55.

    CAS  PubMed  Google Scholar 

  41. Pristipino C, Trani C, Nazzaro MS, et al. Major improvement of percutaneous cardiovascular procedure outcomes with radial artery catheterisation: results from the PREVAIL study. Heart. 2009;95(6):476–82.

    CAS  PubMed  Google Scholar 

  42. Jaffe R, Hong T, Sharieff W, et al. Comparison of radial versus femoral approach for percutaneous coronary interventions in octogenarians. Catheter Cardiovasc Interv. 2007;69(6):815–20.

    PubMed  Google Scholar 

  43. Calabro P, Golia E, Crisci M. Radial versus femoral access for coronary angiography. Angiology. 2017:331971769373.

    Google Scholar 

  44. Andò G, Costa F, Trio O, Oreto G, Valgimigli M. Impact of vascular access on acute kidney injury after percutaneous coronary intervention. Cardiovasc Revascularization Med. 2016;17(5):333–8.

    Google Scholar 

  45. Kolte D, Spence N, Puthawala M, et al. Association of radial versus femoral access with contrast-induced acute kidney injury in patients undergoing primary percutaneous coronary intervention for ST-elevation myocardial infarction. Cardiovasc Revascularization Med. 2016;17(8):546–51.

    Google Scholar 

  46. Pancholy MS, Skelding K, Scott T, Blankenship J, Pancholy SB. Effect of access site choice on acute kidney injury after percutaneous coronary intervention. Am J Cardiol. 2017;120(12):2141–5.

    PubMed  Google Scholar 

  47. Feldkamp T, Luedemann M, Spehlmann ME, et al. Radial access protects from contrast media induced nephropathy after cardiac catheterization procedures. Clin Res Cardiol. 2017:1–10.

    Google Scholar 

  48. Cortese B, Sciahbasi A, Sebik R, et al. Comparison of risk of acute kidney injury after primary percutaneous coronary interventions with the Transradial approach versus the Transfemoral approach (from the PRIPITENA urban registry). Am J Cardiol. 2014;114(6):820–5.

    PubMed  Google Scholar 

  49. Steinvil A, Garcia-Garcia HM, Rogers T, et al. Comparison of propensity score–matched analysis of acute kidney injury after percutaneous coronary intervention with transradial versus transfemoral approaches. Am J Cardiol. 2017;119(10):1507–11.

    PubMed  Google Scholar 

  50. Damluji A, Cohen MG, Smairat R, Steckbeck R, Moscucci M, Gilchrist IC. The incidence of acute kidney injury after cardiac catheterization or PCI: a comparison of radial vs. femoral approach. Int J Cardiol. 2014;173(3):595–7.

    PubMed  Google Scholar 

  51. Inohara T, Kohsaka S, Abe T, et al. Development and validation of a pre-percutaneous coronary intervention risk model of contrast-induced acute kidney injury with an integer scoring system. Am J Cardiol. 2015;115(12):1636–42.

    PubMed  Google Scholar 

  52. Roberts JK, Rao SV, Shaw LK, Gallup DS, Marroquin OC, Patel UD. Comparative efficacy of coronary revascularization procedures for multivessel coronary artery disease in patients with chronic kidney disease. Am J Cardiol. 2017;119(9):1344–51.

    PubMed  PubMed Central  Google Scholar 

  53. Dember LM, Beck GJ, Allon M, et al. Effect of Clopidogrel on early failure of arteriovenous fistulas for hemodialysis. JAMA. 2008;299(18):2164.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dixon BS, Beck GJ, Vazquez MA, et al. Effect of dipyridamole plus aspirin on hemodialysis graft patency. N Engl J Med. 2009;360(21):2191–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Clinical Practice Guidelines for Vascular Access. Am J Kidney Dis. 2006;48:S176-S247.

    Google Scholar 

  56. Burstein JM, Gidrewicz D, Hutchison SJ, Holmes K, Jolly S, Cantor WJ. Impact of radial artery cannulation for coronary angiography and angioplasty on radial artery function. Am J Cardiol. 2007;99(4):457–9.

    PubMed  Google Scholar 

  57. Costa F, Van Leeuwen MAH, Daemen J, et al. The Rotterdam radial access research: ultrasound-based radial artery evaluation for diagnostic and therapeutic coronary procedures. Circ Cardiovasc Interv. 2016;9(2).

    Google Scholar 

  58. Yonetsu T, Kakuta T, Lee T, et al. Assessment of acute injuries and chronic intimal thickening of the radial artery after transradial coronary intervention by optical coherence tomography. Eur Heart J. 2010;31(13):1608–15.

    PubMed  Google Scholar 

  59. Staniloae CS, Mody KP, Sanghvi K, et al. Histopathologic changes of the radial artery wall secondary to transradial catheterization. Vasc Health Risk Manag. 2009;5(3):527–32.

    PubMed  PubMed Central  Google Scholar 

  60. Manoukian SV, Feit F, Mehran R, et al. Impact of major bleeding on 30-day mortality and clinical outcomes in patients with acute coronary syndromes. J Am Coll Cardiol. 2007;49(12):1362–8.

    PubMed  Google Scholar 

  61. Mattea V, Salomon C, Menck N, et al. Low rate of access site complications after transradial coronary catheterization: a prospective ultrasound study. IJC Hear Vasc. 2017;14:46–52.

    Google Scholar 

  62. Kiemeneij F, Vajifdar BU, Eccleshall SC, Laarman GJ, Slagboom T, Van Der Wieken R. Evaluation of a spasmolytic cocktail to prevent radial artery spasm during coronary procedures. Catheter Cardiovasc Interv. 2003;58(3):281–4.

    PubMed  Google Scholar 

  63. Pancholy S, Coppola J, Patel T, Roke-Thomas M. Prevention of radial artery occlusion-patent hemostasis evaluation trial (PROPHET study): a randomized comparison of traditional versus patency documented hemostasis after transradial catheterization. Catheter Cardiovasc Interv. 2008;72(3):335–40.

    PubMed  Google Scholar 

  64. Pancholy SB, Bernat I, Bertrand OF, Patel TM. Prevention of radial artery occlusion after transradial catheterization: the PROPHET-II randomized trial. JACC Cardiovasc Interv. 2016;9(19):1992–9.

    PubMed  Google Scholar 

  65. Bedi HS. Evaluation of previously cannulated radial arteries. Texas Hear Inst J. 2015;42(6):596–7.

    Google Scholar 

  66. Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention. J Am Coll Cardiol. 2004;44(7):1393–9.

    PubMed  Google Scholar 

  67. Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2013;61(22):2242–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Valgimigli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andò, G., Gragnano, F., Calabrò, P., Valgimigli, M. (2020). Therapeutic Considerations with Revascularization in Chronic Kidney Disease: Radial Versus Femoral Arterial Access. In: Rangaswami, J., Lerma, E., McCullough, P. (eds) Kidney Disease in the Cardiac Catheterization Laboratory . Springer, Cham. https://doi.org/10.1007/978-3-030-45414-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45414-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45413-5

  • Online ISBN: 978-3-030-45414-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics