Skip to main content

Achievements and Prospects of Thermoelectric and Hybrid Energy Harvesters for Wearable Electronic Applications

  • Chapter
  • First Online:
Thin Film and Flexible Thermoelectric Generators, Devices and Sensors

Abstract

Wearable electronics are of great interest and have the potential to play important role in next-generation electronics. The human body is an endless and stable source of thermal radiation energy. Thermoelectric generators (TEGs) are promising devices to scavenge thermal energy from human body and directly convert this low-grade heat into electricity to power low-power wearable electronics and eliminate the need for replacement and management of the batteries. TEG’s performance is mainly dependent on the material properties and temperature difference across thermoelectric (TE) materials. For wearable applications, mechanical flexibility is also important. This chapter reviews the development of organic and nanocomposite TE materials, inorganic TE materials with flexible supporting substrate, and self-supporting flexible inorganic TEGs without substrates. Structural design can enhance the temperature difference across TE material, and the use of hybrid energy-harvesting technology to further enhance the efficiency of energy conversion is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Pantelopoulos, N.G. Bourbakis, A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 40, 1–12 (2010)

    Article  Google Scholar 

  2. A.P. Chandrakasan, N. Verma, D.C. Daly, Ultralow-power electronics for biomedical applications. Annu. Rev. Biomed. Eng. 10, 247–274 (2008). https://doi.org/10.1146/annurev.bioeng.10.061807.160547

    Article  CAS  Google Scholar 

  3. Y. Zang, F. Zhang, D. Huang, et al., Flexible suspended gate organic thin-film transistors for ultra-sensitive pressure detection. Nat. Commun. 6, 6269 (2015). https://doi.org/10.1038/ncomms7269

    Article  CAS  Google Scholar 

  4. S. Priya, D.J. Inman, Energy harvesting technologies (Springer, New York, 2009)

    Book  Google Scholar 

  5. G.J. Snyder, Thermoelectric energy harvesting, in Energy Harvesting Technologies, (Springer, New York, 2009), pp. 325–336

    Chapter  Google Scholar 

  6. C.R. Bowen, J. Taylor, E. LeBoulbar, et al., Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 7, 3836–3856 (2014b). https://doi.org/10.1039/C4EE01759E

    Article  Google Scholar 

  7. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (CRC Press, Boca Raton, 2005)

    Google Scholar 

  8. G. Sebald, D. Guyomar, A. Agbossou, On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18, 125006 (2009). https://doi.org/10.1088/0964-1726/18/12/125006

    Article  CAS  Google Scholar 

  9. X. Zhang, L.-D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 1, 92–105 (2015). https://doi.org/10.1016/j.jmat.2015.01.001

    Article  Google Scholar 

  10. F.J. DiSalvo, Thermoelectric cooling and power generation. Science (80-) 285, 703–706 (1999). https://doi.org/10.1126/science.285.5428.703

    Article  CAS  Google Scholar 

  11. S.B. Riffat, X. Ma, Thermoelectrics: A review of present and potential applications. Appl. Therm. Eng. 23, 913–935 (2003)

    Article  Google Scholar 

  12. H.S. Kim, W. Liu, G. Chen, et al., Relationship between thermoelectric figure of merit and energy conversion efficiency. Proc. Natl. Acad. Sci. 112, 8205–8210 (2015a). https://doi.org/10.1073/pnas.1510231112

    Article  CAS  Google Scholar 

  13. A. Majumdar, Thermoelectricity in semiconductor nanostructures. Science (80-) 303, 777–778 (2004)

    Article  CAS  Google Scholar 

  14. P. Webb, Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions. Eur. J. Appl. Physiol. Occup. Physiol. 64, 471–476 (1992). https://doi.org/10.1007/BF00625070

    Article  CAS  Google Scholar 

  15. H. Fang, J. Xia, K. Zhu, et al., Industrial waste heat utilization for low temperature district heating. Energy Policy 62, 236–246 (2013). https://doi.org/10.1016/j.enpol.2013.06.104

    Article  Google Scholar 

  16. F. Suarez, A. Nozariasbmarz, D. Vashaee, M.C. Öztürk, Designing thermoelectric generators for self-powered wearable electronics. Energy Environ. Sci. 9, 2099–2113 (2016). https://doi.org/10.1039/c6ee00456c

    Article  CAS  Google Scholar 

  17. G. Chen, W. Xu, D. Zhu, Recent advances in organic polymer thermoelectric composites. J. Mater. Chem. C 5, 4350–4360 (2017)

    Article  CAS  Google Scholar 

  18. H. Yao, Z. Fan, H. Cheng, et al., Recent development of thermoelectric polymers and composites. Macromol. Rapid Commun. 39, 1700727 (2018)

    Article  Google Scholar 

  19. J. Yang, H.-L. Yip, A.K.-Y. Jen, Rational design of advanced thermoelectric materials. Adv. Energy Mater. 3, 549–565 (2013). https://doi.org/10.1002/aenm.201200514

    Article  CAS  Google Scholar 

  20. T. Park, C. Park, B. Kim, et al., Flexible PEDOT electrodes with large thermoelectric power factors to generate electricity by the touch of fingertips. Energy Environ. Sci. 6, 788–792 (2013). https://doi.org/10.1039/c3ee23729j

    Article  CAS  Google Scholar 

  21. O. Bubnova, Z.U. Khan, H. Wang, et al., Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014). https://doi.org/10.1038/nmat3824

    Article  CAS  Google Scholar 

  22. D. Lee, K. Cho, J. Choi, S. Kim, Effect of mesoscale grains on thermoelectric characteristics of aligned ZnO/PVP composite nanofibers. Mater. Lett. 142, 250–252 (2015). https://doi.org/10.1016/j.matlet.2014.12.029

    Article  CAS  Google Scholar 

  23. D.A. Mengistie, C. Chen, K.M. Boopathi, et al., Enhanced thermoelectric performance of PEDOT:PSS flexible bulky papers by treatment with secondary dopants. ACS Appl. Mater. Interfaces 7, 94–100 (2015). https://doi.org/10.1021/am507032e

    Article  CAS  Google Scholar 

  24. L. Persano, A. Camposeo, D. Pisignano, Active polymer nanofibers for photonics, electronics, energy generation and micromechanics. Prog. Polym. Sci. 43, 48–95 (2015). https://doi.org/10.1016/j.progpolymsci.2014.10.001

    Article  CAS  Google Scholar 

  25. Y.C. Sun, D. Terakita, A.C. Tseng, H.E. Naguib, Study on the thermoelectric properties of PVDF/MWCNT and PVDF/GNP composite foam. Smart Mater. Struct. 24, 085034 (2015b). https://doi.org/10.1088/0964-1726/24/8/085034

    Article  CAS  Google Scholar 

  26. M. Aghelinejad, S.N. Leung, Enhancement of thermoelectric conversion efficiency of polymer/carbon nanotube nanocomposites through foaming-induced microstructuring. J. Appl. Polym. Sci. 134, 45073 (2017). https://doi.org/10.1002/app.45073

    Article  CAS  Google Scholar 

  27. M. Eslamian, Inorganic and organic solution-processed thin film devices. Nano-Micro Lett. 9, 3 (2017)

    Article  Google Scholar 

  28. Z. Fan, P. Li, D. Du, J. Ouyang, Significantly enhanced thermoelectric properties of PEDOT:PSS films through sequential post-treatments with common acids and bases. Adv. Energy Mater. 7, 1602116 (2017). https://doi.org/10.1002/aenm.201602116

    Article  CAS  Google Scholar 

  29. O. Bubnova, X. Crispin, Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 5, 9345–9362 (2012). https://doi.org/10.1039/c2ee22777k

    Article  CAS  Google Scholar 

  30. B. Kamran, The Seebeck coefficient as a measure of entropy per carrier, in Fundamentals of Thermoelectricity, (Oxford University Press, Oxford, 2015)

    Google Scholar 

  31. M. Bharti, A. Singh, S. Samanta, D.K. Aswal, Conductive polymers for thermoelectric power generation. Prog. Mater. Sci. 93, 270–310 (2018)

    Article  CAS  Google Scholar 

  32. Z. Zhu, C. Liu, F. Jiang, et al., Effective treatment methods on PEDOT:PSS to enhance its thermoelectric performance. Synth. Met. 225, 31–40 (2017c). https://doi.org/10.1016/j.synthmet.2016.11.011

    Article  CAS  Google Scholar 

  33. B. Russ, M.J. Robb, F.G. Brunetti, et al., Power factor enhancement in solution-processed organic n-type thermoelectrics through molecular design. Adv. Mater. 26, 3473–3477 (2014). https://doi.org/10.1002/adma.201306116

    Article  CAS  Google Scholar 

  34. A.M. Glaudell, J.E. Cochran, S.N. Patel, M.L. Chabinyc, Impact of the doping method on conductivity and thermopower in semiconducting polythiophenes. Adv. Energy Mater. 5, 149 (2015). https://doi.org/10.1002/aenm.201401072

    Article  CAS  Google Scholar 

  35. A.G. MacDiarmid, A.J. Epstein, Secondary doping in polyaniline. Synth. Met. 69, 85–92 (1995). https://doi.org/10.1016/0379-6779(94)02374-8

    Article  CAS  Google Scholar 

  36. W. Ma, K. Shi, Y. Wu, et al., Enhanced molecular packing of a conjugated polymer with high organic thermoelectric power factor. ACS Appl. Mater. Interfaces 8, 24737–24743 (2016). https://doi.org/10.1021/acsami.6b06899

    Article  CAS  Google Scholar 

  37. A. Hamidi-Sakr, L. Biniek, J.L. Bantignies, et al., A versatile method to fabricate highly in-plane aligned conducting polymer films with anisotropic charge transport and thermoelectric properties: The key role of alkyl side chain layers on the doping mechanism. Adv. Funct. Mater. 27, 1700173 (2017). https://doi.org/10.1002/adfm.201700173

    Article  CAS  Google Scholar 

  38. J.H. Hsu, W. Choi, G. Yang, C. Yu, Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments. Org. Electron. 45, 182–189 (2017). https://doi.org/10.1016/j.orgel.2017.03.007

    Article  CAS  Google Scholar 

  39. S. Liu, H. Deng, Y. Zhao, et al., The optimization of thermoelectric properties in a PEDOT:PSS thin film through post-treatment. RSC Adv. 5, 1910–1917 (2015). https://doi.org/10.1039/c4ra09147g

    Article  Google Scholar 

  40. R. Kroon, D.A. Mengistie, D. Kiefer, et al., Thermoelectric plastics: From design to synthesis, processing and structure-property relationships. Chem. Soc. Rev. 45, 6147–6164 (2016)

    Article  CAS  Google Scholar 

  41. B. O’Connor, R.J. Kline, B.R. Conrad, et al., Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv. Funct. Mater. 21, 3697–3705 (2011). https://doi.org/10.1002/adfm.201100904

    Article  CAS  Google Scholar 

  42. L. Wang, Y. Liu, Z. Zhang, et al., Polymer composites-based thermoelectric materials and devices. Compos. Part B Eng. 122, 145–155 (2017a)

    Article  CAS  Google Scholar 

  43. H. Kaneko, T. Ishiguro, A. Takahashi, J. Tsukamoto, Magnetoresistance and thermoelectric power studies of metal-nonmetal transition in iodine-doped polyacetylene. Synth. Met. 57, 4900–4905 (1993). https://doi.org/10.1016/0379-6779(93)90836-L

    Article  CAS  Google Scholar 

  44. M. Culebras, B. Uriol, C.M. Gómez, A. Cantarero, Controlling the thermoelectric properties of polymers: Application to PEDOT and polypyrrole. Phys. Chem. Chem. Phys. 17, 15140–15145 (2015). https://doi.org/10.1039/c5cp01940k

    Article  CAS  Google Scholar 

  45. J. Li, X. Tang, H. Li, et al., Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline. Synth. Met. 160, 1153–1158 (2010). https://doi.org/10.1016/j.synthmet.2010.03.001

    Article  CAS  Google Scholar 

  46. B.T. McGrail, A. Sehirlioglu, E. Pentzer, Polymer composites for thermoelectric applications. Angew. Chem. Int. Ed. 54, 1710–1723 (2015). https://doi.org/10.1002/anie.201408431

    Article  CAS  Google Scholar 

  47. G.H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719–723 (2013). https://doi.org/10.1038/nmat3635

    Article  CAS  Google Scholar 

  48. Q. Zhang, Y. Sun, W. Xu, D. Zhu, Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions. Energy Environ. Sci. 5, 9639–9644 (2012). https://doi.org/10.1039/c2ee23006b

    Article  CAS  Google Scholar 

  49. K. Shi, F. Zhang, C.A. Di, et al., Toward high performance n-type thermoelectric materials by rational modification of BDPPV backbones. J. Am. Chem. Soc. 137, 6979–6982 (2015). https://doi.org/10.1021/jacs.5b00945

    Article  CAS  Google Scholar 

  50. R.A. Schlitz, F.G. Brunetti, A.M. Glaudell, et al., Solubility-limited extrinsic n-type doping of a high electron mobility polymer for thermoelectric applications. Adv. Mater. 26, 2825–2830 (2014). https://doi.org/10.1002/adma.201304866

    Article  CAS  Google Scholar 

  51. Y. Wang, M. Nakano, T. Michinobu, et al., Naphthodithiophenediimide-Benzobisthiadiazole-based polymers: Versatile n-type materials for field-effect transistors and thermoelectric devices. Macromolecules 50, 857–864 (2017c). https://doi.org/10.1021/acs.macromol.6b02313

    Article  CAS  Google Scholar 

  52. S.J. Kim, J.H. We, B.J. Cho, A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 7, 1959–1965 (2014). https://doi.org/10.1039/c4ee00242c

    Article  CAS  Google Scholar 

  53. J. Liu, H.Q. Yu, Thermoelectric enhancement in polyaniline composites with polypyrrole-functionalized multiwall carbon nanotubes. J. Electron. Mater. 43, 1181–1187 (2014). https://doi.org/10.1007/s11664-013-2958-4

    Article  CAS  Google Scholar 

  54. L. Liang, G. Chen, C.-Y. Guo, Polypyrrole nanostructures and their thermoelectric performance. Mater. Chem. Front. 1, 380–386 (2017a). https://doi.org/10.1039/C6QM00061D

    Article  CAS  Google Scholar 

  55. Y. Wang, J. Yang, L. Wang, et al., Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 9, 20124–20131 (2017e). https://doi.org/10.1021/acsami.7b05357

    Article  CAS  Google Scholar 

  56. J. Wu, Y. Sun, W.B. Pei, et al., Polypyrrole nanotube film for flexible thermoelectric application. Synth. Met. 196, 173–177 (2014). https://doi.org/10.1016/j.synthmet.2014.08.001

    Article  CAS  Google Scholar 

  57. Y.W. Park, Y.S. Lee, C. Park, et al., Thermopower and conductivity of metallic polyaniline. Solid State Commun. 63, 1063–1066 (1987). https://doi.org/10.1016/0038-1098(87)90662-4

    Article  CAS  Google Scholar 

  58. E. Dalas, S. Sakkopoulos, E. Vitoratos, Chemical preparation, direct-current conductivity and thermopower of polyaniline and polypyrrole composites. J. Mater. Sci. 29, 4131–4133 (1994). https://doi.org/10.1007/BF00355982

    Article  CAS  Google Scholar 

  59. K. Lee, S. Cho, H.P. Sung, et al., Metallic transport in polyaniline. Nature 441, 65–68 (2006). https://doi.org/10.1038/nature04705

    Article  CAS  Google Scholar 

  60. Q. Wang, Q. Yao, J. Chang, L. Chen, Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 22, 17612–17618 (2012). https://doi.org/10.1039/c2jm32750c

    Article  CAS  Google Scholar 

  61. D. Yoo, J.J. Lee, C. Park, et al., N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. RSC Adv. 6, 37130–37135 (2016). https://doi.org/10.1039/c6ra02334g

    Article  CAS  Google Scholar 

  62. L. Wang, Q. Yao, H. Bi, et al., PANI/graphene nanocomposite films with high thermoelectric properties by enhanced molecular ordering. J. Mater. Chem. A 3, 7086 (2015). https://doi.org/10.1039/c4ta06422d

    Article  CAS  Google Scholar 

  63. L. Wang, Q. Yao, W. Shi, et al., Engineering carrier scattering at the interfaces in polyaniline based nanocomposites for high thermoelectric performances. Mater. Chem. Front. 1, 741–748 (2017b). https://doi.org/10.1039/C6QM00188B

    Article  CAS  Google Scholar 

  64. C. Nath, A. Kumar, Y.-K. Kuo, G.S. Okram, High thermoelectric figure of merit in nanocrystalline polyaniline at low temperatures. Appl. Phys. Lett. 105, 13310 (2014). http://scitation.aip.org/docserver/fulltext/aip/journal/apl/105/13/1.4897146.pdf?expires=1428674603&id=id&accname=2102614&checksum=5C84CE30FAC03AF2551EC6461F77E525%5Cnhttp://scitation.aip.org/content/aip/journal/apl/105/13/10.1063/1.4897146

    Article  Google Scholar 

  65. R.D. McCullough, The chemistry of conducting polythiophenes. Adv. Mater. 10, 93–116 (1998). https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F

    Article  CAS  Google Scholar 

  66. H. Shimotani, G. Diguet, Y. Iwasa, Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene). Appl. Phys. Lett. 86, 022104 (2005). https://doi.org/10.1063/1.1850614

    Article  CAS  Google Scholar 

  67. M. He, J. Ge, Z. Lin, et al., Thermopower enhancement in conducting polymer nanocomposites via carrier energy scattering at the organic-inorganic semiconductor interface. Energy Environ. Sci. 5, 8351–8358 (2012). https://doi.org/10.1039/c2ee21803h

    Article  CAS  Google Scholar 

  68. O. Bubnova, Z.U. Khan, A. Malti, et al., Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011). https://doi.org/10.1038/nmat3012

    Article  CAS  Google Scholar 

  69. Q. Wei, M. Mukaida, K. Kirihara, et al., Recent progress on PEDOT-based thermoelectric materials. Materials (Basel) 8, 732–750 (2015)

    Article  CAS  Google Scholar 

  70. M. Culebras, C.M. Gómez, A. Cantarero, Enhanced thermoelectric performance of PEDOT with different counter-ions optimized by chemical reduction. J. Mater. Chem. A 2, 10109–10115 (2014). https://doi.org/10.1039/c4ta01012d

    Article  CAS  Google Scholar 

  71. J. Zhao, D. Tan, G. Chen, A strategy to improve the thermoelectric performance of conducting polymer nanostructures. J. Mater. Chem. C 5, 47–53 (2017a). https://doi.org/10.1039/C6TC04613D

    Article  CAS  Google Scholar 

  72. K. Sun, S. Zhang, P. Li, et al., Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. J. Mater. Sci. Mater. Electron. 26, 4438–4462 (2015a)

    Article  CAS  Google Scholar 

  73. L. Groenendaal, F. Jonas, D. Freitag, et al., Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 12, 481–494 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C

    Article  CAS  Google Scholar 

  74. P. Kar, Doping in Conjugated Polymers (Wiley, Hoboken, 2013)

    Book  Google Scholar 

  75. X. Zhao, D. Madan, Y. Cheng, et al., High conductivity and electron-transfer validation in an n-type fluoride-anion-doped polymer for thermoelectrics in air. Adv. Mater. 29, 1606928 (2017b). https://doi.org/10.1002/adma.201606928

    Article  CAS  Google Scholar 

  76. S. Wang, H. Sun, U. Ail, et al., Thermoelectric properties of solution-processed n-doped ladder-type conducting polymers. Adv. Mater. 28, 10764–10771 (2016). https://doi.org/10.1002/adma.201603731

    Article  CAS  Google Scholar 

  77. N. Toshima, Recent progress of organic and hybrid thermoelectric materials. Synth. Met. 225, 3–21 (2017). https://doi.org/10.1016/j.synthmet.2016.12.017

    Article  CAS  Google Scholar 

  78. A.M. Marconnet, N. Yamamoto, M.A. Panzer, et al., Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density. ACS Nano 5, 4818–4825 (2011). https://doi.org/10.1021/nn200847u

    Article  CAS  Google Scholar 

  79. H. Deng, L. Lin, M. Ji, et al., Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 39, 627–655 (2014)

    Article  CAS  Google Scholar 

  80. G.P. Moriarty, S. De, P.J. King, et al., Thermoelectric behavior of organic thin film nanocomposites. J. Polym. Sci. B 51, 119–123 (2013). https://doi.org/10.1002/polb.23186

    Article  CAS  Google Scholar 

  81. G. Mechrez, R.Y. Suckeveriene, E. Zelikman, et al., Highly-tunable polymer/carbon nanotubes systems: Preserving dispersion architecture in solid composites via rapid microfiltration. ACS Macro Lett. 1, 848–852 (2012). https://doi.org/10.1021/mz300145a

    Article  CAS  Google Scholar 

  82. K. Zhang, J. Qiu, S. Wang, Thermoelectric properties of PEDOT nanowire/PEDOT hybrids. Nanoscale 8, 8033–8041 (2016). https://doi.org/10.1039/c5nr08421k

    Article  CAS  Google Scholar 

  83. A.J. Minnich, M.S. Dresselhaus, Z. Ren, G. Chen, Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2, 466 (2009). https://doi.org/10.1039/b822664b

    Article  CAS  Google Scholar 

  84. Z. Liang, M.J. Boland, K. Butrouna, et al., Increased power factors of organic-inorganic nanocomposite thermoelectric materials and the role of energy filtering. J. Mater. Chem. A 5, 15891–15900 (2017b). https://doi.org/10.1039/c7ta02307c

    Article  CAS  Google Scholar 

  85. J. Xiong, F. Jiang, H. Shi, et al., Liquid exfoliated graphene as dopant for improving the thermoelectric power factor of conductive PEDOT:PSS nanofilm with hydrazine treatment. ACS Appl. Mater. Interfaces 7, 14917–14925 (2015). https://doi.org/10.1021/acsami.5b03692

    Article  CAS  Google Scholar 

  86. L. Zhang, Y. Harima, I. Imae, Highly improved thermoelectric performances of PEDOT:PSS/SWCNT composites by solvent treatment. Org. Electron. 51, 304–307 (2017a). https://doi.org/10.1016/j.orgel.2017.09.030

    Article  CAS  Google Scholar 

  87. L. Yan, M. Shao, H. Wang, et al., High seebeck effects from hybrid metal/polymer/metal thin-film devices. Adv. Mater. 23, 4120–4124 (2011). https://doi.org/10.1002/adma.201101634

    Article  CAS  Google Scholar 

  88. D.G. Cahill, W.K. Ford, K.E. Goodson, et al., Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

    Article  CAS  Google Scholar 

  89. C. Dames, G. Chen, Thermal conductivity of nanostructured thermoelectric materials, in Thermoelectrics Handbook Macro to Nano, (Boca Raton, CRC Press, 2005), p. 1014

    Google Scholar 

  90. C. Yu, K. Choi, L. Yin, J.C. Grunlan, Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors. ACS Nano 5, 7885–7892 (2011). https://doi.org/10.1021/nn202868a

    Article  CAS  Google Scholar 

  91. K. Biswas, J. He, I.D. Blum, et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414–418 (2012). https://doi.org/10.1038/nature11439

    Article  CAS  Google Scholar 

  92. L.D. Zhao, V.P. Dravid, M.G. Kanatzidis, The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci. 7, 251–268 (2014c)

    Article  CAS  Google Scholar 

  93. L. Wang, Q. Yao, H. Bi, et al., Large thermoelectric power factor in polyaniline/graphene nanocomposite films prepared by solution-assistant dispersing method. J. Mater. Chem. A 2, 11107–11113 (2014). https://doi.org/10.1039/c4ta01541j

    Article  CAS  Google Scholar 

  94. A. Bejan, Porous media, in Heat Transfer Handbook, ed. by A. Bejan, A. Kraus, (Wiley, Hoboken, 2003)

    Google Scholar 

  95. Q. Zhang, Y. Sun, W. Xu, D. Zhu, Organic thermoelectric materials: Emerging green energy materials converting heat to electricity directly and efficiently. Adv. Mater. 26, 6829–6851 (2014b). https://doi.org/10.1002/adma.201305371

    Article  CAS  Google Scholar 

  96. M. Antunes, J.I. Velasco, V. Realinho, et al., Heat transfer in polypropylene-based foams produced using different foaming processes. Adv. Eng. Mater. 11, 811 (2009). https://doi.org/10.1002/adem.200900129

    Article  CAS  Google Scholar 

  97. M. Antunes, J.I. Velasco, Multifunctional polymer foams with carbon nanoparticles. Prog. Polym. Sci. 39, 486–509 (2014)

    Article  CAS  Google Scholar 

  98. W. Yang, W. Zou, Z. Du, et al., Enhanced conductive polymer nanocomposite by foam structure and polyelectrolyte encapsulated on carbon nanotubes. Compos. Sci. Technol. 123, 106–114 (2016b). https://doi.org/10.1016/j.compscitech.2015.12.009

    Article  CAS  Google Scholar 

  99. M.P. Tran, C. Detrembleur, M. Alexandre, et al., The influence of foam morphology of multi-walled carbon nanotubes/poly(methyl methacrylate) nanocomposites on electrical conductivity. Polymer (United Kingdom) 54, 3261–3270 (2013). https://doi.org/10.1016/j.polymer.2013.03.053

    Article  CAS  Google Scholar 

  100. T. Zhu, Y. Liu, C. Fu, et al., Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater. 29, 1605884 (2017a)

    Article  Google Scholar 

  101. L.-D. Zhao, S.-H. Lo, Y. Zhang, et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014b). https://doi.org/10.1038/nature13184

    Article  CAS  Google Scholar 

  102. M. Saleemi, A. Ruditskiy, M.S. Toprak, et al., Evaluation of the structure and transport properties of nanostructured antimony telluride (Sb2Te3). J. Electron. Mater. 43, 1927–1932 (2014). https://doi.org/10.1007/s11664-013-2911-6

    Article  CAS  Google Scholar 

  103. X. Lu, D.T. Morelli, Materials Aspect of Thermoelectricity (CRC Press, Boca Raton, 2016)

    Google Scholar 

  104. J.H. Bahk, H. Fang, K. Yazawa, A. Shakouri, Flexible thermoelectric materials and device optimization for wearable energy harvesting. J. Mater. Chem. C 3, 10362–10374 (2015)

    Article  CAS  Google Scholar 

  105. M. Beekman, D.T. Morelli, G.S. Nolas, Better thermoelectrics through glass-like crystals. Nat. Mater. 14, 1182–1185 (2015)

    Article  CAS  Google Scholar 

  106. L.D. Hicks, M.S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993). https://doi.org/10.1103/PhysRevB.47.12727

    Article  CAS  Google Scholar 

  107. M.S. Dresselhaus, G. Chen, M.Y. Tang, et al., New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007). https://doi.org/10.1002/adma.200600527

    Article  CAS  Google Scholar 

  108. B. Sothmann, R. Sánchez, A.N. Jordan, Thermoelectric energy harvesting with quantum dots. Nanotechnology 26, 032001 (2015)

    Article  CAS  Google Scholar 

  109. J. Mao, Z. Liu, Z. Ren, Size effect in thermoelectric materials. npj Quantum Mater. 1, 16028 (2016). https://doi.org/10.1038/npjquantmats.2016.28

    Article  Google Scholar 

  110. D.M. Rowe, CRC Handbook of Thermoelectrics, vol 16 (CRC Press, New York, 1995), pp. 1251–1256

    Google Scholar 

  111. T.M. Tritt, X. Tang, Q. Zhang, W. Xie, Solar thermoelectrics: Direct solar thermal energy conversion. MRS Bull. 34, 366 (2011)

    Google Scholar 

  112. S.I. Kim, K.H. Lee, H.A. Mun, et al., Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science (80-) 348, 109–114 (2015b). https://doi.org/10.1126/science.aaa4166

    Article  CAS  Google Scholar 

  113. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001). https://doi.org/10.1038/35098012

    Article  CAS  Google Scholar 

  114. L. Hu, H. Wu, T. Zhu, et al., Tuning multiscale microstructures to enhance thermoelectric performance of n-type bismuth-telluride-based solid solutions. Adv. Energy Mater. 5, 1500411 (2015). https://doi.org/10.1002/aenm.201500411

    Article  CAS  Google Scholar 

  115. H. Zhao, J. Sui, Z. Tang, et al., High thermoelectric performance of MgAgSb-based materials. Nano Energy 7, 97–103 (2014a). https://doi.org/10.1016/j.nanoen.2014.04.012

    Article  CAS  Google Scholar 

  116. Z. Liu, Y. Wang, J. Mao, et al., Lithium doping to enhance thermoelectric performance of MgAgSb with weak electron-phonon coupling. Adv. Energy Mater. 6, 1502269 (2016). https://doi.org/10.1002/aenm.201502269

    Article  CAS  Google Scholar 

  117. P. Ying, X. Li, Y. Wang, et al., Hierarchical chemical bonds contributing to the intrinsically low thermal conductivity in α-MgAgSb thermoelectric materials. Adv. Funct. Mater. 27, 1604145 (2017). https://doi.org/10.1002/adfm.201604145

    Article  CAS  Google Scholar 

  118. N. Yamada, R. Ino, Y. Ninomiya, Truly transparent p-type γ-CuI thin films with high hole mobility. Chem. Mater. 28, 4971–4981 (2016). https://doi.org/10.1021/acs.chemmater.6b01358

    Article  CAS  Google Scholar 

  119. C. Yang, M. Kneiβ, M. Lorenz, M. Grundmann, Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proc. Natl. Acad. Sci. 113, 12929–12933 (2016a). https://doi.org/10.1073/pnas.1613643113

    Article  CAS  Google Scholar 

  120. C. Yang, D. Souchay, M. KneiĂź, et al., Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film. Nat. Commun. 8, 16076 (2017a). https://doi.org/10.1038/ncomms16076

    Article  CAS  Google Scholar 

  121. K.C. See, J.J. Urban, R.A. Segalman, et al., Inorganic nanostructure-organic polymer heterostructures useful for thermoelectric devices (2017)

    Google Scholar 

  122. C. Wan, X. Gu, F. Dang, et al., Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS 2. Nat. Mater. 14, 622–627 (2015). https://doi.org/10.1038/nmat4251

    Article  CAS  Google Scholar 

  123. Y. Du, K. Cai, S. Chen, et al., Facile preparation and thermoelectric properties of Bi2Te3 based alloy nanosheet/PEDOT: PSS composite films. ACS Appl. Mater. 6, 5735–5743 (2014). https://doi.org/10.1021/am5002772

    Article  CAS  Google Scholar 

  124. S. Yang, K. Cho, J. Yun, et al., Thermoelectric characteristics of γ-Ag2Te nanoparticle thin films on flexible substrates. Thin Solid Films 641, 65–68 (2017b). https://doi.org/10.1016/j.tsf.2017.01.068

    Article  CAS  Google Scholar 

  125. J.Y. Oh, J.H. Lee, S.W. Han, et al., Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 9, 1696–1705 (2016). https://doi.org/10.1039/c5ee03813h

    Article  CAS  Google Scholar 

  126. X. Meng, Z. Liu, B. Cui, et al., Grain boundary engineering for achieving high thermoelectric performance in n-type skutterudites. Adv. Energy Mater. 7, 1602582 (2017). https://doi.org/10.1002/aenm.201602582

    Article  CAS  Google Scholar 

  127. L. Yang, Z.G. Chen, M.S. Dargusch, J. Zou, High performance thermoelectric materials: Progress and their applications. Adv. Energy Mater. 8, 1701797 (2018)

    Article  Google Scholar 

  128. Y. Wang, Y. Shi, D. Mei, Z. Chen, Wearable thermoelectric generator for harvesting heat on the curved human wrist. Appl. Energy 205, 710–719 (2017d). https://doi.org/10.1016/j.apenergy.2017.08.117

    Article  Google Scholar 

  129. Y. Wang, Y. Shi, D. Mei, Z. Chen, Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer. Appl. Energy 215, 690–698 (2018). https://doi.org/10.1016/j.apenergy.2018.02.062

    Article  CAS  Google Scholar 

  130. Y. Shi, Y. Wang, D. Mei, et al., Design and fabrication of wearable thermoelectric generator device for heat harvesting. IEEE Robot Autom. Lett. 3, 373–378 (2018). https://doi.org/10.1109/LRA.2017.2734241

    Article  Google Scholar 

  131. P. Gokhale, B. Loganathan, J. Crowe, et al., Development of flexible thermoelectric cells and performance investigation of thermoelectric materials for power generation. Energy Procedia 110, 281–285 (2017)

    Article  CAS  Google Scholar 

  132. P. Fan, Z.H. Zheng, Y.Z. Li, et al., Low-cost flexible thin film thermoelectric generator on zinc based thermoelectric materials. Appl. Phys. Lett. 106, 073901 (2015). https://doi.org/10.1063/1.4909531

    Article  CAS  Google Scholar 

  133. J. Gao, L. Miao, C. Liu, et al., A novel glass-fiber-aided cold-press method for fabrication of n-type Ag2Te nanowires thermoelectric film on flexible copy-paper substrate. J. Mater. Chem. A 5, 24740–24748 (2017). https://doi.org/10.1039/c7ta07601k

    Article  CAS  Google Scholar 

  134. Z. Lu, M. Layani, X. Zhao, et al., Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 10, 3551–3554 (2014)

    Article  CAS  Google Scholar 

  135. D. Madan, Z. Wang, P.K. Wright, J.W. Evans, Printed flexible thermoelectric generators for use on low levels of waste heat. Appl. Energy 156, 587–592 (2015). https://doi.org/10.1016/j.apenergy.2015.07.066

    Article  CAS  Google Scholar 

  136. Z. Cao, E. Koukharenko, M.J. Tudor, et al., Flexible screen printed thermoelectric generator with enhanced processes and materials. Sens. Actuators A Phys. 238, 196–206 (2016). https://doi.org/10.1016/j.sna.2015.12.016

    Article  CAS  Google Scholar 

  137. Z. Cao, E. Koukharenko, M.J. Tudor, et al., Screen printed flexible Bi2Te3-Sb2Te3 based thermoelectric generator. J. Phys. Conf. Ser. 476, 012031 (2013). https://doi.org/10.1088/1742-6596/476/1/012031

    Article  CAS  Google Scholar 

  138. M.-K.K. Kim, M.-S. Kim, S.-E. Jo, Y.-J. Kim, Triboelectric–thermoelectric hybrid nanogenerator for harvesting frictional energy. Smart Mater. Struct. 25, 125007 (2016)

    Article  Google Scholar 

  139. J.H. We, S.J. Kim, B.J. Cho, Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 73, 506–512 (2014). https://doi.org/10.1016/j.energy.2014.06.047

    Article  CAS  Google Scholar 

  140. L. Zhang, S. Lin, T. Hua, et al., Fiber-based thermoelectric generators: Materials, device structures, fabrication, characterization, and applications. Adv. Energy Mater. 8, 1700524 (2018)

    Article  Google Scholar 

  141. Z. Lu, H. Zhang, C. Mao, C.M. Li, Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl. Energy 164, 57–63 (2016). https://doi.org/10.1016/j.apenergy.2015.11.038

    Article  CAS  Google Scholar 

  142. A.R.M. Siddique, R. Rabari, S. Mahmud, B. Van Heyst, Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique. Energy 115, 1081–1091 (2016). https://doi.org/10.1016/j.energy.2016.09.087

    Article  CAS  Google Scholar 

  143. J.A. Lee, A.E. Aliev, J.S. Bykova, et al., Woven-Yarn thermoelectric textiles. Adv. Mater. 28, 5038–5044 (2016). https://doi.org/10.1002/adma.201600709

    Article  CAS  Google Scholar 

  144. T. Zhang, K. Li, J. Zhang, et al., High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 41, 35–42 (2017b). https://doi.org/10.1016/j.nanoen.2017.09.019

    Article  CAS  Google Scholar 

  145. S.J. Kim, H.E. Lee, H. Choi, et al., High-performance flexible thermoelectric power generator using laser multiscanning lift-off process. ACS Nano 10, 10851–10857 (2016). https://doi.org/10.1021/acsnano.6b05004

    Article  CAS  Google Scholar 

  146. Y. Eom, D. Wijethunge, H. Park, et al., Flexible thermoelectric power generation system based on rigid inorganic bulk materials. Appl. Energy 206, 649–656 (2017). https://doi.org/10.1016/j.apenergy.2017.08.231

    Article  CAS  Google Scholar 

  147. E. Mu, G. Yang, X. Fu, et al., Fabrication and characterization of ultrathin thermoelectric device for energy conversion. J. Power Sources 394, 17–25 (2018). https://doi.org/10.1016/j.jpowsour.2018.05.031

    Article  CAS  Google Scholar 

  148. C.S. Kim, H.M. Yang, J. Lee, et al., Self-powered wearable electrocardiography using a wearable thermoelectric power generator. ACS Energy Lett. 3, 501–507 (2018b). https://doi.org/10.1021/acsenergylett.7b01237

    Article  CAS  Google Scholar 

  149. V. Leonov, P. Fiorini, Thermal matching of a thermoelectric energy scavenger with the ambience. Proceedings 5th European Conference on Thermoelectrics (ECT 07) (2007), pp. 129–133

    Google Scholar 

  150. M. Lossec, B. Multon, H. Ben Ahmed, Sizing optimization of a thermoelectric generator set with heatsink for harvesting human body heat. Energy Convers. Manag. 68, 260–265 (2013). https://doi.org/10.1016/j.enconman.2013.01.021

    Article  Google Scholar 

  151. A. Montecucco, J. Siviter, A.R. Knox, Constant heat characterisation and geometrical optimisation of thermoelectric generators. Appl. Energy 149, 248–258 (2015). https://doi.org/10.1016/j.apenergy.2015.03.120

    Article  Google Scholar 

  152. K. Pietrzyk, J. Soares, B. Ohara, H. Lee, Power generation modeling for a wearable thermoelectric energy harvester with practical limitations. Appl. Energy 183, 218–228 (2016). https://doi.org/10.1016/j.apenergy.2016.08.186

    Article  CAS  Google Scholar 

  153. R.A. Kishore, M. Sanghadasa, S. Priya, Optimization of segmented thermoelectric generator using Taguchi and ANOVA techniques. Sci. Rep. 7, 16746 (2017). https://doi.org/10.1038/s41598-017-16372-8

    Article  CAS  Google Scholar 

  154. C.S. Kim, G.S. Lee, H. Choi, et al., Structural design of a flexible thermoelectric power generator for wearable applications. Appl. Energy 214, 131–138 (2018a). https://doi.org/10.1016/j.apenergy.2018.01.074

    Article  Google Scholar 

  155. M. Wahbah, M. Alhawari, B. Mohammad, et al., Characterization of human body-based thermal and vibration energy harvesting for wearable devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 4, 354–363 (2014). https://doi.org/10.1109/JETCAS.2014.2337195

    Article  Google Scholar 

  156. K. Gordiz, A.K. Menon, S.K. Yee, Interconnect patterns for printed organic thermoelectric devices with large fill factors. J. Appl. Phys. 122, 124507 (2017). https://doi.org/10.1063/1.4989589

    Article  CAS  Google Scholar 

  157. S. LeBlanc, Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol. 1, 26–35 (2014). https://doi.org/10.1016/j.susmat.2014.11.002

    Article  Google Scholar 

  158. L. Francioso, C. De Pascali, V. Sglavo, et al., Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator. Energy Convers. Manag. 145, 204–213 (2017). https://doi.org/10.1016/j.enconman.2017.04.096

    Article  CAS  Google Scholar 

  159. T. Nguyen Huu, T. Nguyen Van, O. Takahito, Flexible thermoelectric power generator with Y-type structure using electrochemical deposition process. Appl. Energy 210, 467–476 (2018). https://doi.org/10.1016/j.apenergy.2017.05.005

    Article  CAS  Google Scholar 

  160. K. Yazawa, A. Shakouri, Cost-efficiency trade-off and the design of thermoelectric power generators. Environ. Sci. Technol. 45, 7548–7553 (2011). https://doi.org/10.1021/es2005418

    Article  CAS  Google Scholar 

  161. J. Estrada-López, A. Abuellil, Z. Zeng, E. Sánchez-Sinencio, Multiple input energy harvesting systems for autonomous IoT end-nodes. J. Low Power Electron. Appl. 8, 6 (2018). https://doi.org/10.3390/jlpea8010006

    Article  Google Scholar 

  162. M. Hasan Nia, A. Abbas Nejad, A.M. Goudarzi, et al., Cogeneration solar system using thermoelectric module and fresnel lens. Energy Convers. Manag. 84, 305–310 (2014). https://doi.org/10.1016/j.enconman.2014.04.041

    Article  Google Scholar 

  163. J. Zhang, Y. Xuan, L. Yang, Performance estimation of photovoltaic-thermoelectric hybrid systems. Energy 78, 895–903 (2014a). https://doi.org/10.1016/j.energy.2014.10.087

    Article  CAS  Google Scholar 

  164. Y. Da, Y. Xuan, Q. Li, From light trapping to solar energy utilization: A novel photovoltaic-thermoelectric hybrid system to fully utilize solar spectrum. Energy 95, 200–210 (2016). https://doi.org/10.1016/j.energy.2015.12.024

    Article  Google Scholar 

  165. R. Lamba, S.C. Kaushik, Modeling and performance analysis of a concentrated photovoltaic–thermoelectric hybrid power generation system. Energy Convers. Manag. 115, 288–298 (2016). https://doi.org/10.1016/j.enconman.2016.02.061

    Article  Google Scholar 

  166. J. Zhang, Y. Xuan, Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system. Energy Convers. Manag. 129, 1–10 (2016). https://doi.org/10.1016/j.enconman.2016.10.006

    Article  CAS  Google Scholar 

  167. W. Zhu, Y. Deng, L. Cao, Light-concentrated solar generator and sensor based on flexible thin-film thermoelectric device. Nano Energy 34, 463–471 (2017b). https://doi.org/10.1016/j.nanoen.2017.03.020

    Article  CAS  Google Scholar 

  168. T.H. Kil, S. Kim, D.H. Jeong, et al., A highly-efficient, concentrating-photovoltaic/thermoelectric hybrid generator. Nano Energy 37, 242–247 (2017). https://doi.org/10.1016/j.nanoen.2017.05.023

    Article  CAS  Google Scholar 

  169. A. Rezania, L.A. Rosendahl, Feasibility and parametric evaluation of hybrid concentrated photovoltaic-thermoelectric system. Appl. Energy 187, 380–389 (2017). https://doi.org/10.1016/j.apenergy.2016.11.064

    Article  Google Scholar 

  170. M. He, Y.J. Lin, C.M. Chiu, et al., A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting. Nano Energy 49, 588–595 (2018). https://doi.org/10.1016/j.nanoen.2018.04.072

    Article  CAS  Google Scholar 

  171. E. Yin, Q. Li, Y. Xuan, Optimal design method for concentrating photovoltaic-thermoelectric hybrid system. Appl. Energy 226, 320–329 (2018). https://doi.org/10.1016/j.apenergy.2018.05.127

    Article  Google Scholar 

  172. Y.P. Zhou, M.J. Li, W.W. Yang, Y.L. He, The effect of the full-spectrum characteristics of nanostructure on the PV-TE hybrid system performances within multi-physics coupling process. Appl. Energy 213, 169–178 (2018). https://doi.org/10.1016/j.apenergy.2018.01.027

    Article  Google Scholar 

  173. M.A. Green, General temperature dependence of solar cell performance and implications for device modelling. Prog. Photovolt. Res. Appl. 11, 333–340 (2003). https://doi.org/10.1002/pip.496

    Article  CAS  Google Scholar 

  174. M.S. Kim, M.K. Kim, K. Kim, Y.J. Kim, Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity. Smart Mater. Struct. 26, 095046 (2017). https://doi.org/10.1088/1361-665X/aa82d5

    Article  Google Scholar 

  175. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7, 25–44 (2014a). https://doi.org/10.1039/C3EE42454E

    Article  CAS  Google Scholar 

  176. D.S. Montgomery, C.A. Hewitt, D.L. Carroll, Hybrid thermoelectric piezoelectric generator. Appl. Phys. Lett. 108, 263901 (2016). https://doi.org/10.1063/1.4954770

    Article  CAS  Google Scholar 

  177. F.R. Fan, Z.Q. Tian, Z. Lin Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Prof. Chris Bowen would like to acknowledge the funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007–2013)/ERC Grant Agreement no. 320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS). Prof. Sadao Kawamura and A/Prof. Shima Okada would like to acknowledge the funding from the Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, on “Robotics Innovation Based on Advanced Materials”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mengying Xie or Chris Bowen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, M. et al. (2021). Achievements and Prospects of Thermoelectric and Hybrid Energy Harvesters for Wearable Electronic Applications. In: Skipidarov, S., Nikitin, M. (eds) Thin Film and Flexible Thermoelectric Generators, Devices and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-45862-1_1

Download citation

Publish with us

Policies and ethics