Skip to main content

High Thermoelectric Properties in Quasi-One-Dimensional Organic Crystals

  • Chapter
  • First Online:
Thin Film and Flexible Thermoelectric Generators, Devices and Sensors

Abstract

Recently, there has been a significant attention in thermoelectric (TE) applications of organic materials due to more diverse and tunable properties and less cost in comparison to inorganic counterparts. We present a short review about TE properties of organic materials and especially of quasi-one-dimensional (Q1D) organic crystals of p-type tetrathiotetracene-iodide, TTT2I3, and of n-type tetrathiotetracene-tetracyanoquinodimethane, TTT(TCNQ)2. To describe TE properties, we apply a physical model accounting for two of the most important electron-phonon interactions. One interaction is of deformation potential type and the other is of polaron type. The scattering of charge carriers on point-like impurities and on thermally activated defects is considered as well. It is shown that due to a partial compensation of above mentioned electron-phonon interactions, energy relaxation time of charge carriers increases significantly for a narrow strip of states in conduction band, with Lorentzian-type maximum as a function of charge carrier energy. The height of the maximum is limited by supplementary internal interactions and impurity scattering processes and may be rather high in sufficiently purified crystals. Charge carriers near this maximum will possess an increased mobility. If the concentration of charge carriers is optimized so as the Fermi energy is close to the states that correspond to this maximum, it is predicted to obtain high TE properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.F. Ioffe, Semiconductor thermo-elements and thermoelectric cooling, in Infosearch Ltd, (London, 1958)

    Google Scholar 

  2. A. Casian, in Thermoelectric Handbook, Macro to Nano, Chapter 36, ed. by D. M. Rowe, (CRC Press, Boca Raton, 2006)

    Google Scholar 

  3. A. Casian, Prospects of the thermoelectricity based on organic materials. J. Thermoelectricity 3(45) (2007)

    Google Scholar 

  4. Y. Wang, J. Zhou, R. Yang, Thermoelectric properties of molecular nanowires. J. Phys. Chem. C 115, 24418 (2011)

    Article  CAS  Google Scholar 

  5. Z. Fan, J. Quyang, Thermoelectric properties of PEDOT:PSS. Adv. Electron. Mater. 2019, 1800769

    Google Scholar 

  6. G.-H. Kim, L. Shao, K. Zhang, K.P. Pipe, Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat. Mater. 12, 719 (2013)

    Article  CAS  Google Scholar 

  7. K. Zhang, J. Qiud, S. Wang, Thermoelectric properties of PEDOT nanowire/ PEDOT hybrids. Nanoscale 8, 8033 (2016)

    Article  CAS  Google Scholar 

  8. B. Liu, J. Hu, J. Zhou, R. Yang, Thermoelectric transport in nanocomposites. Materials 10, 418 (2017). https://doi.org/10.3390/ma10040418

    Article  CAS  Google Scholar 

  9. S.P. Ashby, J. Garcia-Canadas, G. Min, Y. Chao, Measurement of thermoelectric properties of phenyl acetylene-capped silicon nanoparticles and their potential in fabrication of thermoelectric materials. J. Electron. Mater. 42, 1495 (2013)

    Article  CAS  Google Scholar 

  10. M. Romero, D. Mombru, R. Faccio, A. Mombru, Thermoelectric properties and thermal stability of conducting polymer nanocomposites: A review, in Advanced Thermoelectric Materials, ed. by C. R. Park, (Scrivener Publishing LLC, Hoboken, 2019), pp. 467–492

    Google Scholar 

  11. C.J. Boile et al., Tuning charge transport dynamics via clustering of doping in organic semiconductor thin films. Nat. Commun. 10, 2827 (2019). https://doi.org/10.1038/s41467-019-10567-5

    Article  CAS  Google Scholar 

  12. M. Upadhayaya, Z. Aksamija, C.J. Boile, Venkataraman. Effects of Disorder on Thermoelectric Properties of Semiconducting Polymers, vol arXiv (2019), p. 1901.03370v1. [cond-mat.mtrl-sci]

    Google Scholar 

  13. I. Petsagkourakis et al., Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism. Org. Electron.. https://doi.org/10.1016/j.orgel.2017.11.018

  14. J.-S. Kim, W. Jang, D.H. Wang, The investigation of the Seebeck effect of the poly(3,4-Ethylenedioxythiophene)-Tosylate with the various concentrations of an oxidant. Polymers 11, 21 (2019). https://doi.org/10.3390/polym11010021

    Article  CAS  Google Scholar 

  15. R.M.W. Wolfe, A.K. Menon, T.R. Fletcher, et al., Simultaneous enhancement in electrical conductivity and Thermopower of n-type NiETT/PVDF composite films by annealing. Adv. Funct. Mater. 28, 1803275 (2018)

    Article  Google Scholar 

  16. C.-J. Yao, H.-L. Zhang, Q. Zhang, Recent Progress in thermoelectric materials based on conjugated polymers. Polymers 11, 107 (2019). https://doi.org/10.3390/polym11010107

    Article  CAS  Google Scholar 

  17. M. Culebras, K. Choi, C. Cho, Recent Progress in flexible organic Thermoelectrics. Micromachines 9, 638 (2018)

    Article  Google Scholar 

  18. H. Li et al., Dopant-dependent increase in Seebeck coefficient and electrical conductivity in blended polymers with offset carrier energies. Adv. Electron. Mater. 5, 1800618 (2019)

    Article  Google Scholar 

  19. N. Roland et al., Understanding morphology-mobility dependence in PEDOT:Tos. Phys. Rev. Materials 2, 045605 (2018). https://doi.org/10.1103/PhysRevMaterials.2.045605

    Article  Google Scholar 

  20. K.W. Shah, S. Wang, D. Soo, J. Xu, One-dimensional nanostructure engineering of conducting polymers for thermoelectric applications. Appl. Sci. 9, 1422 (2019). https://doi.org/10.3390/app9071422

    Article  CAS  Google Scholar 

  21. J.J. Urban, A.K. Menon, A. Jain, Z. Tian, K. Hippalgaonkar, Correlated electrons, organic transport, machine learning, and more. J. Appl. Phys. 125, 180902 (2019). https://doi.org/10.1063/1.5092525

    Article  CAS  Google Scholar 

  22. Z. Li et al., A free-standing high-output power density thermoelectric device based on structure-ordered PEDOT:PSS. Adv. Electron. Mater., 4(2), 1700496 (2018). https://doi.org/10.1002/aelm.201700496

  23. S. Mortazavinatanzi, A. Rezaniakolaei, A. Rosendahl, Printing and folding: A solution for high-throughput processing of organic thin-film thermoelectric devices. Sensors (Basel) 18(4), 989 (2018). https://doi.org/10.3390/s18040989

    Article  CAS  Google Scholar 

  24. W. Shi, D. Wang, Z. Shuai, High-performance organic thermoelectric materials: Theoretical insights and computational design. Adv. Electron. Mater. 5, 1800882 (2019). https://doi.org/10.1002/aelm.201800882

    Article  CAS  Google Scholar 

  25. B. Hilti, C.W. Mayer, Electrical properties of the organic metallic compound bis (tetrathiotetracene)-triiodide, (TTT)2I3. Helv. Chim. Acta 61(40), 501–511 (1978)

    Article  CAS  Google Scholar 

  26. L.C. Isett, Magnetic susceptibility, electrical resistivity, and thermoelectric power measurements of bis (tetrathiotetracene)-triiodide. Phys. Rev. B 18, 439 (1978)

    Article  CAS  Google Scholar 

  27. I. Shchegolev, E. Yagubskii, Extended Linear Chain Compounds, vol 2 (JS Miller, Plenum Press, New York, 1982), pp. 385–434

    Book  Google Scholar 

  28. L. Buravov, O. Eremenko, R. Lyubovskii, E. Yagubskii, Structure and electromagnetic properties of a new high-conductivity complex TTT(TCNQ)2. JETP 20(7), 208–209 (1974)

    Google Scholar 

  29. N. Ueno, Electronic Structure of Molecular Solids: Bridge to the Electrical Conduction, Chapter 3, in Physics of Organic Semiconductors, ed. by W. Brutting, C. Adachi, 2nd edn., (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2012), pp. 65–89

    Google Scholar 

  30. A. Casian, I. Sanduleac, Effect of interchain interaction on electrical conductivity in quasi-one-dimensional organic crystals of tetrathiotetracene-iodide. J. Nanoelectron. Optoelectron. 7(7), 706–711 (2012). https://doi.org/10.1166/jno.2012.1408

    Article  CAS  Google Scholar 

  31. A. Casian, I. Sanduleac, Thermoelectric properties of tetrathiotetracene iodide crystals: Modeling and experiment. J. Electron. Mater. 43(10), 3740–3745 (2014). https://doi.org/10.1007/s11664-014-3105-6

    Article  CAS  Google Scholar 

  32. A.I. Casian, I.I. Sanduleac, Organic thermoelectric materials: New opportunities. J. Thermoelectricity 3, 11 (2013)

    Google Scholar 

  33. A. Casian, J. Pflaum, I. Sanduleac, Prospects of low dimensional organic materials for thermoelectric applications. J. Thermoelectricity 1, 16–26 (2015)

    Google Scholar 

  34. A. Casian, V. Dusciac, I. Coropceanu, Phys. Rev. B 66, 165404 (2002)

    Article  Google Scholar 

  35. V.F. Kaminskii, M.L. Khidekel’, R.B. Lyubovskii et al. Phys. Status Solidi A 44, 77 (1977)

    Article  CAS  Google Scholar 

  36. S. Andronic, A. Casian, Adv. Mat. Physic. Chem. 7, 212–222 (2017)

    Article  CAS  Google Scholar 

  37. S. Andronic, A. Casian, Peierls structural transition in organic crystals of TTT2I3 type in 2D approximation. Mold. J. Phys. Scien. 18, 21 (2019)

    Google Scholar 

  38. P.M. Chaikin, G. Gruner, I.F. Shchegolev, E.B. Yagubskii, Sol. State Commun. 32, 1211 (1979)

    Article  CAS  Google Scholar 

  39. A. Casian, Violation of Wiedemann-Franz law in quasi-one-dimensional organic crystals. Phys. Rev. B 81, 155415 (2010)

    Article  Google Scholar 

  40. I. Sanduleac, A. Casian, Nanostructured TTT(TCNQ)2 organic crystals as promising thermoelectric n-type materials: 3D modeling. J. Electron. Mater. 45, 1316–1320 (2015)

    Article  Google Scholar 

  41. G.J. Snyder, M. Soto, R. Alley, D. Koester, B. Conner, Hot Spot Cooling Using Embedded Thermoelectric Coolers, 22nd IEEE SEMI-THERM Symposium (Dallas, TX, 2006), pp. 135–143

    Google Scholar 

  42. http://www.hi-z.com/hz-14.html

  43. MARLOW INC.., http://www.marlow.com/industries/telecommunications/transmission-lasers-dwdm.html

  44. GENTHERM, “Climate Seats”, http://www.gentherm.com/page/climateseats

  45. “KOOLATRON”, http://www.koolatron.com/

  46. A.I. Casian, I.I. Sanduleac, Thermoelectric efficiency of a p-n-module formed from organic materials. J. Thermoelectricity 1, 42 (2017)

    Google Scholar 

  47. F. Huewe, A. Steeger, K. Kostova, L. Burroughs, I. Bauer, P. Strohriegl, V. Dimitrov, S. Woodward, J. Pflaum, Low-cost and sustainable organic thermoelectrics based on low-dimensional molecular metals. Adv. Mater. 29, 1605682 (2017)

    Article  Google Scholar 

  48. K. Pudzs, A. Vembris, M. Rutkis, S. Woodward, Adv. Electron. Mater. 3, 1600429 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanduleac, I., Casian, A. (2021). High Thermoelectric Properties in Quasi-One-Dimensional Organic Crystals. In: Skipidarov, S., Nikitin, M. (eds) Thin Film and Flexible Thermoelectric Generators, Devices and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-45862-1_11

Download citation

Publish with us

Policies and ethics