Skip to main content

Bayesian Generalized Horseshoe Estimation of Generalized Linear Models

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11907))

Abstract

Bayesian global-local shrinkage estimation with the generalized horseshoe prior represents the state-of-the-art for Gaussian regression models. The extension to non-Gaussian data, such as binary or Student-t regression, is usually done by exploiting a scale-mixture-of-normals approach. However, many standard distributions, such as the gamma and the Poisson, do not admit such a representation. We contribute two extensions to global-local shrinkage methodology. The first is an adaption of recent auxiliary gradient based-sampling schemes to the global-local shrinkage framework, which yields simple algorithms for sampling from generalized linear models. We also introduce two new samplers for the hyperparameters in the generalized horseshoe model, one based on an inverse-gamma mixture of inverse-gamma distributions, and the second a rejection sampler. Results show that these new samplers are highly competitive with the no U-turn sampler for small numbers of predictors, and potentially perform better for larger numbers of predictors. Results for hyperparameter sampling show our new inverse-gamma inverse-gamma based sampling scheme outperforms the standard sampler based on a gamma mixture of gamma distributions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Available at https://dschmidt.org.

  2. 2.

    Available at https://au.mathworks.com/matlabcentral/fileexchange/60823.

References

  1. Armagan, A., Dunson, D.B., Clyde, M.: Generalized beta mixtures of Gaussians. In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 24, pp. 523–531 (2011)

    Google Scholar 

  2. Bhadra, A., Datta, J., Polson, N.G., Willard, B.: The horseshoe+ estimator of ultra-sparse signals (2016). arXiv:1502.00560

  3. Bhattacharya, A., Chakraborty, A., Mallick, B.K.: Fast sampling with Gaussian scale-mixture priors in high-dimensional regression. Biometrika 103(4), 985–991 (2016). arXiv:1506.04778

  4. Bhattacharya, A., Pati, D., Pillai, N.S., Dunson, D.B.: Dirichlet-Laplace priors for optimal shrinkage. J. Am. Stat. Assoc. 110, 1479–1490 (2015)

    Article  MathSciNet  Google Scholar 

  5. Carvalho, C.M., Polson, N.G., Scott, J.G.: The horseshoe estimator for sparse signals. Biometrika 97(2), 465–480 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cotter, S., Roberts, G., Stuart, A., White, D.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28, 424–446 (2014)

    Article  MathSciNet  Google Scholar 

  7. Gilks, W.R., Wild, P.: Adaptive rejection sampling for Gibbs sampling. J. Roy. Stat. Soc. C (Appl. Stat.) 41(2), 337–348 (1992)

    MATH  Google Scholar 

  8. Hoffman, M.D., Gelman, A.: The no-u-turn sampler: adaptively setting path lengths in hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1351–1381 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Makalic, E., Schmidt, D.F.: High-dimensional Bayesian regularised regression with the BayesReg package (2016). arXiv:1611.06649

  10. Makalic, E., Schmidt, D.F.: A simple sampler for the horseshoe estimator. IEEE Signal Process. Lett. 23(1), 179–182 (2016)

    Article  Google Scholar 

  11. Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. J. Roy. Stat. Soc. A (General) 135(3), 370–384 (1972)

    Article  Google Scholar 

  12. Nishihara, R., Murray, I., Adams, R.P.: Parallel MCMC with generalized elliptical slice sampling. J. Mach. Learn. Res. 15, 2087–2112 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Park, T., Casella, G.: The Bayesian lasso. J. Am. Stat. Assoc. 103(482), 681–686 (2008)

    Article  MathSciNet  Google Scholar 

  14. van der Pas, S., Szabó, B., van der Vaart, A.: Adaptive posterior contraction rates for the horseshoe (2017). arXiv:1702.03698v1

  15. Polson, N.G., Scott, J.G., Windle, J.: The Bayesian bridge. J. Roy. Stat. Soc.: Ser. B (Stat. Methodol.) 76(4), 713–733 (2014)

    Article  MathSciNet  Google Scholar 

  16. Polson, N.G., Scott, J.G.: Shrink globally, act locally: sparse Bayesian regularization and prediction. In: Bayesian Statistics, vol. 9 (2010)

    Google Scholar 

  17. Polson, N.G., Scott, J.G., Windle, J.: Bayesian inference for logistic models using Pólya-gamma latent variables 108(504), 1339–1349 (2013)

    Google Scholar 

  18. Rue, H.: Fast sampling of Gaussian Markov random fields. J. Roy. Stat. Soc. B 63(2), 325–338 (2001)

    Article  MathSciNet  Google Scholar 

  19. Schmidt, D.F., Makalic, E.: Adaptive Bayesian shrinkage estimation using log-scale shrinkage priors (2017). https://arxiv.org/abs/1801.02321

  20. Titsias, M.K., Papaspiliopoulos, O.: Auxiliary gradient-based sampling algorithms. J. Roy. Stat. Soc. B 80(4), 749–767 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel F. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schmidt, D.F., Makalic, E. (2020). Bayesian Generalized Horseshoe Estimation of Generalized Linear Models. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11907. Springer, Cham. https://doi.org/10.1007/978-3-030-46147-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46147-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46146-1

  • Online ISBN: 978-3-030-46147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics