Skip to main content

Fog Computing Architectures and Frameworks for Healthcare 4.0

  • Chapter
  • First Online:
Fog Computing for Healthcare 4.0 Environments

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Fog computing environment is geographically dispersed and diverse heterogeneous devices are associated ubiquitously to it towards the end of a system so as to give cooperatively variable and adaptable communication, storage devices, and computation. Fog computing has numerous recompenses and is well-matched for the applications, wherein time-sensitivity, higher response time, and lower latency are absolutely important factors, particularly healthcare applications. These applications also have lot of challenges such as need of remote monitoring of patients, need of preventive instead of reactive care, etc. In many studies, cloud computing was shown to be well suited for healthcare applications, but with advent of fog computing, fog computing imposes more advantages as compared to cloud computing. Many studies showed that fog computing is well-matched for healthcare applications as it facilitates low latency, higher response time, reliability, scalability, location awareness, better security and privacy of health data, fault tolerance, etc. This study is divided into collection of frameworks developed for healthcare application with respect to fog computing and collection of proposed architectures and implemented systems for the same. Researchers have shown through simulations and experiments that the main factor in healthcare application is reduced latency which should be achieved by means of fog computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lasi, H., Fettke, P., Kemper, H. G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239–242.

    Article  Google Scholar 

  2. Bloem, J., Menno V.D., Sander D., David E., René M., & Erik, V.O. (2014). The fourth industrial revolution. Things Tighten 8.

    Google Scholar 

  3. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660.

    Article  Google Scholar 

  4. Market pulse report, IoT, Growth enabler. Retrieved April 2017, from https://growthenabler.com/flipbook/pdf/IOT%20Report.pdf

  5. Pang, Z., Yang, G., Khedri, R., & Zhang, Y. T. (2018). Introduction to the special section: Convergence of automation technology, biomedical engineering, and health informatics toward the healthcare 4.0. IEEE Reviews in Biomedical Engineering, 11, 249–259.

    Article  Google Scholar 

  6. Pang, Z., Yang, G., Khedri, R., & Zhang, Y. T. (2018). Introduction to the special section: Convergence of automation technology, biomedical engineering, and health informatics toward the healthcare 4.0. IEEE Reviews in Biomedical Engineering, 11, 249–259.

    Article  Google Scholar 

  7. Biostamp. (2016). https://www.mc10inc.com/

  8. Farandos, N. M., Yetisen, A. K., Monteiro, M. J., Lowe, C. R., & Yun, S. H. (2015). Contact lens sensors in ocular diagnostics. Advanced Healthcare Materials, 4(6), 792–810.

    Article  Google Scholar 

  9. Sultan, N. (2014). Making use of cloud computing for healthcare provision: Opportunities and challenges. International Journal of Information Management, 34(2), 177–184.

    Article  Google Scholar 

  10. Apostu, A., Puican, F., Ularu, G., Suciu, G., & Todoran, G. (2013). Study on advantages and disadvantages of Cloud Computing—the advantages of telemetry applications in the cloud. In Recent advances in applied computer science and digital services.

    Google Scholar 

  11. Bonomi, F., Milito, R., Zhu, J., & Addepalli, S. (2012). Fog computing and its role in the internet of things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing (pp. 13–16). New York, NY: ACM.

    Chapter  Google Scholar 

  12. Khan, S., Parkinson, S., & Qin, Y. (2017). Fog computing security: A review of current applications and security solutions. Journal of Cloud Computing, 6(1), 19.

    Article  Google Scholar 

  13. Deng, R., Lu, R., Lai, C., & Luan, T. H. (2015). Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing. In 2015 IEEE International Conference on Communications (ICC) (pp. 3909–3914). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  14. Vaquero, L. M., & Rodero-Merino, L. (2014). Finding your way in the fog: Towards a comprehensive definition of fog computing. ACM SIGCOMM Computer Communication Review, 44(5), 27–32.

    Article  Google Scholar 

  15. Bertini, M., Marcantoni, L., Toselli, T., & Ferrari, R. (2016). Remote monitoring of implantable devices: Should we continue to ignore it? International Journal of Cardiology, 202, 368–377.

    Article  Google Scholar 

  16. Wise, A., MacIntosh, E., Rajakulendran, N., & Khayat, Z. (2016). Transforming health: Shifting from reactive to proactive and predictive care. Toronto, ON: MaRS.

    Google Scholar 

  17. Bilal, K., Khalid, O., Erbad, A., & Khan, S. U. (2018). Potentials, trends, and prospects in edge technologies: Fog, cloudlet, mobile edge, and micro data centers. Computer Networks, 130, 94–120.

    Article  Google Scholar 

  18. Escamilla-Ambrosio, P. J., Rodríguez-Mota, A., Aguirre-Anaya, E., Acosta-Bermejo, R., & Salinas-Rosales, M. (2018) Distributing Computing in the internet of things: cloud, fog and edge computing overview. In NEO 2016 (pp. 87–115). Cham: Springer.

    Chapter  Google Scholar 

  19. Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., et al. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.

    Article  Google Scholar 

  20. Kraemer, F. A., Braten, A. E., Tamkittikhun, N., & Palma, D. (2017). Fog computing in healthcare—a review and discussion. IEEE Access, 5, 9206–9222.

    Article  Google Scholar 

  21. Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: Architecture, key technologies, applications and open issues. Journal of Network and Computer Applications, 98, 27–42.

    Article  Google Scholar 

  22. Atlam, H. F., Walters, R. J., & Wills, G. B. (2018). Fog computing and the internet of things: A review. Big Data and Cognitive Computing, 2(2), 10.

    Article  Google Scholar 

  23. Mutlag, A. A., Ghani, M. K. A., Arunkumar, N. A., Mohamed, M. A., & Mohd, O. (2019). Enabling technologies for fog computing in healthcare IoT systems. Future Generation Computer Systems, 90, 62–78.

    Article  Google Scholar 

  24. Nishio, T., Shinkuma, R., Takahashi, T., & Mandayam, N. B. (2013). Service-oriented heterogeneous resource sharing for optimizing service latency in mobile cloud. In Proceedings of the First International Workshop on Mobile Cloud Computing and Networking (pp. 19–26). New York, NY: ACM.

    Chapter  Google Scholar 

  25. Kliem, A., & Kao, O. (2015). The Internet of Things resource management challenge. In 2015 IEEE International Conference on Data Science and Data Intensive Systems (pp. 483–490). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  26. Lubamba, C., & Bagula, A. (2017). Cyber-healthcare cloud computing interoperability using the HL7-CDA standard. In 2017 IEEE Symposium on Computers and Communications (ISCC) (pp. 105–110). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  27. Abu-Elkheir, M., Hassanein, H. S., & Oteafy, S. M. (2016). Enhancing emergency response systems through leveraging crowdsensing and heterogeneous data. In 2016 International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 188–193). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  28. Farris, I., Orsino, A., Militano, L., Iera, A., & Araniti, G. (2018). Federated IoT services leveraging 5G technologies at the edge. Ad Hoc Networks, 68, 58–69.

    Article  Google Scholar 

  29. Ryden, M., Oh, K., Chandra, A., & Weissman, J. (2014). Nebula: Distributed edge cloud for data intensive computing. In 2014 IEEE International Conference on Cloud Engineering (pp. 57–66). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  30. Zhang, Q., Zhang, X., Zhang, Q., Shi, W., & Zhong, H. (2016). Firework: Big data sharing and processing in collaborative edge environment. In 2016 Fourth IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb) (pp. 20–25). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  31. Dubey, H., Yang, J., Constant, N., Amiri, A. M., Yang, Q., & Makodiya, K. (2015). Fog data: Enhancing telehealth big data through fog computing. In Proceedings of the ASE Bigdata and Socialinformatics 2015 (p. 14). New York, NY: ACM.

    Google Scholar 

  32. Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I., Jiang, M., et al. (2018). Exploiting smart e-Health gateways at the edge of healthcare Internet-of-Things: A fog computing approach. Future Generation Computer Systems, 78, 641–658.

    Article  Google Scholar 

  33. Garcia-de-Prado, A., Ortiz, G., & Boubeta-Puig, J. (2017). COLLECT: COLLaborativE ConText-aware service oriented architecture for intelligent decision-making in the Internet of Things. Expert Systems with Applications, 85, 231–248.

    Article  Google Scholar 

  34. Kumari, A., Tanwar, S., Tyagi, S., & Kumar, N. (2018). Fog computing for Healthcare 4.0 environment: Opportunities and challenges. Computers & Electrical Engineering, 72, 1–13.

    Article  Google Scholar 

  35. Monteiro, A., Dubey, H., Mahler, L., Yang, Q., & Mankodiya, K. (2016). Fit: A fog computing device for speech tele-treatments. In 2016 IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 1–3). Piscataway, NJ: IEEE.

    Google Scholar 

  36. Manogaran, G., Varatharajan, R., Lopez, D., Kumar, P. M., Sundarasekar, R., & Thota, C. (2018). A new architecture of Internet of Things and big data ecosystem for secured smart healthcare monitoring and alerting system. Future Generation Computer Systems, 82, 375–387.

    Article  Google Scholar 

  37. Zohora, F. T., Khan, M. R. R., Bhuiyan, M. F. R., & Das, A. K. (2017). Enhancing the capabilities of IoT based fog and cloud infrastructures for time sensitive events. In 2017 International Conference on Electrical Engineering and Computer Science (ICECOS) (pp. 224–230). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  38. Sahni, Y., Cao, J., Zhang, S., & Yang, L. (2017). Edge Mesh: A new paradigm to enable distributed intelligence in Internet of Things. IEEE Access, 5, 16441–16458.

    Article  Google Scholar 

  39. Oueis, J., Strinati, E. C., Sardellitti, S., & Barbarossa, S. (2015). Small cell clustering for efficient distributed fog computing: A multi-user case. In 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall) (pp. 1–5). Piscataway, NJ: IEEE.

    Google Scholar 

  40. Rahman, A., Hassanain, E., & Hossain, M. S. (2017). Towards a secure mobile edge computing framework for Hajj. IEEE Access, 5, 11768–11781.

    Article  Google Scholar 

  41. Li, J., Jin, J., Yuan, D., Palaniswami, M., & Moessner, K. (2015). EHOPES: Data-centered Fog platform for smart living. In 2015 International Telecommunication Networks and Applications Conference (ITNAC) (pp. 308–313). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  42. Dupont, C., Giaffreda, R., & Capra, L. (2017). Edge computing in IoT context: Horizontal and vertical Linux container migration. In 2017 Global Internet of Things Summit (GIoTS) (pp. 1–4). Piscataway, NJ: IEEE.

    Google Scholar 

  43. Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R. X., Kurfess, T., et al. (2017). A fog computing-based framework for process monitoring and prognosis in cyber-manufacturing. Journal of Manufacturing Systems, 43, 25–34.

    Article  Google Scholar 

  44. Vora, J., Kaneriya, S., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2019). TILAA: Tactile internet-based ambient assistant living in fog environment. Future Generation Computer Systems, 98, 635–649.

    Article  Google Scholar 

  45. Gia, T. N., Jiang, M., Sarker, V. K., Rahmani, A. M., Westerlund, T., Liljeberg, P., & Tenhunen, H. (2017). Low-cost fog-assisted health-care IoT system with energy-efficient sensor nodes. In 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1765–1770). Piscataway, NJ: IEEE.

    Google Scholar 

  46. Chakraborty, S., Bhowmick, S., Talaga, P., & Agrawal, D. P. (2016). Fog networks in healthcare application. In 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (pp. 386–387). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  47. Sood, S. K., & Mahajan, I. (2017). Wearable IoT sensor based healthcare system for identifying and controlling chikungunya virus. Computers in Industry, 91, 33–44.

    Article  Google Scholar 

  48. Vora, J., Tanwar, S., Tyagi, S., Kumar, N., & Rodrigues, J. J. (2017). FAAL: Fog computing-based patient monitoring system for ambient assisted living. In 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom) (pp. 1–6). Piscataway, NJ: IEEE.

    Google Scholar 

  49. Azimi, I., Anzanpour, A., Rahmani, A. M., Pahikkala, T., Levorato, M., Liljeberg, P., et al. HiCH: Hierarchical fog-assisted computing architecture for healthcare IoT. ACM Transactions on Embedded Computing Systems (TECS), 16(5s), 174.

    Google Scholar 

  50. Ahmad, M., Amin, M. B., Hussain, S., Kang, B. H., Cheong, T., & Lee, S. (2016). Health fog: A novel framework for health and wellness applications. The Journal of Supercomputing, 72(10), 3677–3695.

    Article  Google Scholar 

  51. Elmisery, A. M., Rho, S., & Aborizka, M. (2019). A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services. Cluster Computing, 22(1), 1611–1638.

    Article  Google Scholar 

  52. Elmisery, A. M., Rho, S., & Botvich, D. (2016). A fog based middleware for automated compliance with OECD privacy principles in internet of healthcare things. IEEE Access, 4, 8418–8441.

    Article  Google Scholar 

  53. Rajagopalan, A., Jagga, M., Kumari, A., & Ali, S. T. (2017). A DDoS prevention scheme for session resumption SEA architecture in healthcare IoT. In 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT) (pp. 1–5). Piscataway, NJ: IEEE.

    Google Scholar 

  54. Chaudhry, J., Saleem, K., Islam, R., Selamat, A., Ahmad, M., & Valli, C. (2017). AZSPM: Autonomic zero-knowledge security provisioning model for medical control systems in fog computing environments. In 2017 IEEE 42nd Conference on Local Computer Networks Workshops (LCN Workshops) (pp. 121–127). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  55. Al Hamid, H. A., Rahman, S. M. M., Hossain, M. S., Almogren, A., & Alamri, A. (2017). A security model for preserving the privacy of medical big data in a healthcare cloud using a fog computing facility with pairing-based cryptography. IEEE Access, 5, 22313–22328.

    Article  Google Scholar 

  56. Vora, J., Nayyar, A., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., et al. (2018). BHEEM: A blockchain-based framework for securing electronic health records. In 2018 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). Piscataway, NJ: IEEE.

    Google Scholar 

  57. Liu, X., Deng, R. H., Yang, Y., Tran, H. N., & Zhong, S. (2018). Hybrid privacy-preserving clinical decision support system in fog–cloud computing. Future Generation Computer Systems, 78, 825–837.

    Article  Google Scholar 

  58. Moosavi, S. R., Gia, T. N., Nigussie, E., Rahmani, A. M., Virtanen, S., Tenhunen, H., et al. (2016). End-to-end security scheme for mobility enabled healthcare Internet of Things. Future Generation Computer Systems, 64, 108–124.

    Article  Google Scholar 

  59. Tanwar, S., Parekh, K., & Evans, R. (2020). Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications, 50, 102407.

    Google Scholar 

  60. Aazam, M., & Huh, E. N. (2015). Fog computing micro datacenter based dynamic resource estimation and pricing model for IoT. In 2015 IEEE 29th International Conference on Advanced Information Networking and Applications (pp. 687–694). Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  61. Vora, J., DevMurari, P., Tanwar, S., Tyagi, S., Kumar, N., & Obaidat, M. S. (2018). Blind signatures based secured e-healthcare system. In 2018 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5). Piscataway, NJ: IEEE.

    Google Scholar 

  62. Gupta, R., Tanwar, S., Tyagi, S., Kumar, N., Obaidat, M. S., & Sadoun, B. (2019). HaBiTs: Blockchain-based telesurgery framework for healthcare 4.0. In 2019 International Conference on Computer, Information and Telecommunication Systems (CITS) (pp. 1–5). Piscataway, NJ: IEEE.

    Google Scholar 

  63. Tanwar, S., Vora, J., Kaneriya, S., Tyagi, S., Kumar, N., Sharma, V., et al. (2019). Human arthritis analysis in fog computing environment using Bayesian network classifier and thread protocol. IEEE Consumer Electronics Magazine, 9(1), 88–94.

    Article  Google Scholar 

  64. Hossain, M., Islam, S. R., Ali, F., Kwak, K. S., & Hasan, R. (2018). An Internet of Things-based health prescription assistant and its security system design. Future Generation Computer Systems, 82, 422–439.

    Article  Google Scholar 

  65. He, S., Cheng, B., Wang, H., Huang, Y., & Chen, J. (2017). Proactive personalized services through fog-cloud computing in large-scale IoT-based healthcare application. China Communications, 14(11), 1–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuja R. Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nair, A.R., Tanwar, S. (2021). Fog Computing Architectures and Frameworks for Healthcare 4.0. In: Tanwar, S. (eds) Fog Computing for Healthcare 4.0 Environments. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-46197-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46197-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46196-6

  • Online ISBN: 978-3-030-46197-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics