Skip to main content

Hadean Jack Hills Zircon Geochemistry

  • Chapter
  • First Online:
Hadean Earth

Abstract

Geochemical analysis of zircons older than 4 billion years, found in Early Archean metasediments at Jack Hills, Western Australia, provide insights into the nature of Hadean Earth. Oxygen isotopes have been interpreted as indicating that protoliths of magmas from which Hadean zircons crystallized were formed in the presence of water at or near Earth’s surface. Apparent crystallization temperatures of Hadean zircons cluster at 680 °C. Given the low porosity expected in rocks under anatectic conditions, dehydration melting of micas as the principal source of the melts from which these zircons crystallized can be ruled out. Instead, a regulated mechanism producing near minimum-melting conditions during the Hadean is inferred. Combined, these results have been interpreted to reflect chemical weathering and sediment cycling in the presence of liquid water shortly after Earth accretion. 176Hf/177Hf ratios of Hadean Jack Hills zircons show large heterogeneities indicating a major differentiation of the silicate Earth by 4.50 Ga. A possible consequence of this differentiation is the formation of continental crust of similar order to the present. Studies of mineral inclusions within Hadean zircons indicate their crystallization from hydrous, granitoid magmas at pressures greater than 6 kbars, implying low near-surface geothermal gradients which in turn suggests their origin in underthrust environments. Given general agreement that life could not have emerged until liquid water appeared at or near Earth’s surface, a significant implication is that our planet may have been habitable as much as 500 Ma earlier than previously thought. Indeed, carbon isotopic evidence obtained from inclusions in a Hadean zircon is consistent with life having emerged by 4.1 Ga, or several 100 million years earlier that the hypothesized lunar cataclysm. Trace element analyses of aluminum, halogens, sulfur, phosphorus, rare earth elements in Hadean zircons are consistent with their origin in a range of granitoid magma types and redox conditions. Although some of the above interpretations remain subject to debate, there is now a widespread consensus that molecular water was present at or near Earth’s surface since at least 4.3 Ga. Perhaps the most remarkable feature of inferences drawn from investigations of these ancient zircons is that none were predicted from theory, underscoring the importance of observations in testing models of early Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott, D. H., & Hoffman, S. E. (1984). Archaean plate tectonics revisited. Part 1. Heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents. Tectonics, 3, 429–448.

    Article  Google Scholar 

  • Abdel-Rahman, A. F. M. (1994). Nature of biotites from alkaline calc-alkaline and peraluminous magmas. Journal of Petrology, 35, 525–541.

    Article  Google Scholar 

  • Abe, Y. (1993). Physical state of the very early Earth. Lithos, 30, 223–235.

    Article  Google Scholar 

  • Aikman, A. B., Harrison, T. M., & Herman, J. (2012). The origin of Eo- and Neohimalayan granitoids, Eastern Tibet. Journal of Asian Earth Sciences, 58, 143–157.

    Article  Google Scholar 

  • Amelin, Y. V. (1998). Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments. Chemical Geology, 146, 25–38.

    Article  Google Scholar 

  • Amelin, Y. V., Lee, D. C., Halliday, A. N., & Pidgeon, R. T. (1999). Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature, 399, 252–255.

    Article  Google Scholar 

  • Armstrong, R. L. (1981). Radiogenic isotopes: The case for crustal recycling on a near-steady-state no-continental-growth Earth. Philosophical Transactions of the Royal Society London Series A, 301, 443–471.

    Google Scholar 

  • Battistuzzi, F. U., Feijão, A., & Hedges, S. B. (2004). A genomic timescale of prokaryote evolution: Insights into the origin of methanogenesis, phototrophy, and the colonization of land. B.M.C. Evolutionary Biology, 4, 44–51. https://doi.org/10.1186/1471-2148-4-44.

    Article  Google Scholar 

  • Bell, E. A. (2013). Hadean-Archean transitions: Constraints from the Jack Hills detrital zircon record (Ph.D. thesis). University of California, Los Angeles, U.S.A.

    Google Scholar 

  • Bell, E. (2017). Petrology: Ancient magma sources revealed. Nature Geoscience, 10, 397.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., & Harrison, T. M. (2016). Recovering the primary geochemistry of Jack Hills zircons through quantitative estimates of chemical alteration. Geochimica et Cosmochimica Acta, 191, 187–202.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Mao, W. (2015a). Potentially biogenic carbon preserved in a 4.1 Ga zircon. Proceedings of the National Academy of Sciences, 112, 14518–14521.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., Harrison, T. M., & Wielicki, M. M. (2018). Mineral inclusion assemblage and detrital zircon provenance. Chemical Geology, 477, 151–160.

    Article  Google Scholar 

  • Bell, E. A., Boehnke, P., Hopkins-Wielicki, M. D., & Harrison, T. M. (2015b). Distinguishing primary and secondary inclusion assemblages in Jack Hills zircons. Lithos, 234, 15–26.

    Article  Google Scholar 

  • Bell, E. A., & Harrison, T. M. (2013). Post-Hadean transitions in Jack Hills zircon provenance: A signal of the Late Heavy Bombardment? Earth and Planetary Science Letters, 364, 1–11.

    Article  Google Scholar 

  • Bell, E. A., Harrison, T. M., Kohl, I. E., & Young, E. D. (2014). Eoarchean evolution of the Jack Hills zircon source and loss of Hadean crust. Geochimica et Cosmochimica Acta, 146, 27–42.

    Article  Google Scholar 

  • Bell, E. A., Harrison, T. M., McCulloch, M. T., & Young, E. D. (2011). Early Archean crustal evolution of the Jack Hills Zircon source terrane inferred from Lu-Hf, 207Pb/206Pb, and δ18O systematics of Jack Hills zircons. Geochimica et Cosmochimica Acta, 75, 4816–4829.

    Article  Google Scholar 

  • Bickle, M. J. (1978). Heat loss from the Earth: Constraints on Archaean tectonics from the relation between geothermal gradients and the rate of plate production. Earth and Planetary Science Letters, 40, 301–315.

    Article  Google Scholar 

  • Biggin, A. J., de Wit, M. J., Langereis, C. G., Zegers, T. E., Voûte, S., Dekkers, M. J., & Drost, K. (2011) Palaeomagnetism of Archaean rocks of the Onverwacht Group Barberton Greenstone Belt (southern Africa): Evidence for a stable and potentially reversing geomagnetic field at ca. 3.5 Ga. Earth and Planetary Science Letters, 302, 314–328.

    Google Scholar 

  • Blichert-Toft, J., & Albarède, F. (2008). Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth and Planetary Science Letters, 265, 686–702.

    Article  Google Scholar 

  • Boehnke, P., Watson, E. B., Trail, D., Harrison, T. M., & Schmitt, A. K. (2013). Zircon saturation re-revisited. Chemical Geology, 351, 324–334.

    Article  Google Scholar 

  • Brasier, M. D., Antcliffe, J., Saunders, M., & Wacey, D. (2015). Changing the picture of Earth’s earliest fossils (3.5-1.9 Ga) with new approaches and new discoveries. Proceedings of the National Academy of Sciences, 112, 4859–4864.

    Article  Google Scholar 

  • Buda, G., Koller, F., Kovács, J., & Ulrych, J. (2004). Compositional variation of biotite from Variscan granitoids in Central Europe: a statistical evaluation. Acta Mineralogica-Petrographica, Szeged, 45, 21–37.

    Google Scholar 

  • Budyko, M. I. (1969). The effect of solar radiation variations on the climate of Earth. Tellus, 21, 611–619.

    Article  Google Scholar 

  • Burnham, C. W. (1975). Water and magmas; A mixing model. Geochimica et Cosmochimica Acta, 39, 1077–1084.

    Article  Google Scholar 

  • Burnham, A. D., & Berry, A. J. (2017). Formation of Hadean granites by melting of igneous crust. Nature Geoscience, 10, 457–460.

    Article  Google Scholar 

  • Cameron, E., Valley, J., Ortiz-Cordero, D., Kitajima, K., & Cavosie, A. (2016). Detrital Jack Hills zircon-quartz δ18O analysis tests alteration of zircon and zircon inclusions. In 16th Goldschmidt Conference Abstracts, 349.

    Google Scholar 

  • Carley, T. L., Bell, E. A., Miller, C. F., Claiborne, L. L., & Harrison, T. M. (2018). Striking similarities and subtle differences across the Hadean-Archean boundary: Model melt insight into the early Earth using new zircon/melt Kds. Geological Society of America. Abstracts.

    Google Scholar 

  • Carley, T. L., Bell, E. A., Miller, E. A., Claiborne, L. L., & Harrison, T. M. (2020). Hadean, Archean, and modern Earth: Zircon-modeled melts clarify the formation of Earth’s earliest crust. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10502994.1.

  • Carroll, M. R., & Wyllie, P. J. (1989). Experimental phase relations in the system tonalite-peridotite-H2O at 15 kb; Implications for assimilation and differentiation processes near the crust-mantle boundary. Journal of Petrology, 30, 1351–1382.

    Article  Google Scholar 

  • Cavosie, A. J., Valley, J. W., Wilde, S. A, & E.I.M.F. (2005). Magmatic δ18O in 4400-3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean. Earth and Planetary Science Letters, 235, 663–681.

    Google Scholar 

  • Cavosie, A. J., Valley, J. W., Wilde, S. A., & EIMF. (2006). Correlated microanalysis of zircon: Trace element, δ18O, and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochimica et Cosmochimica Acta, 70, 5601–5616.

    Google Scholar 

  • Cavosie, A. J., Wilde, S. A., Liu, D., Weiblen, P. W., & Valley, J. W. (2004). Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons: A mineral record of early Archean to Mesoproterozoic (4348–1576 Ma) magmatism. Precambrian Research, 135, 251–279.

    Article  Google Scholar 

  • Chappell, B. W., & White, A. J. R. (1974). Two contrasting granite types. Pacific Geology, 8, 173–174.

    Google Scholar 

  • Cherniak, D. J., & Watson, E. B. (2003) Diffusion in zircon. In J. M. Hanchar & P.W.O Hoskin (Eds.), Zircon (pp. 89–112) Chantilly. VA: Reviews in Mineralogy and Geochemistry.

    Google Scholar 

  • Cherniak, D. J., & Watson, E. B. (2007). Ti diffusion in zircon. Chemical Geology, 242, 470–483.

    Article  Google Scholar 

  • Cherniak, D. J., & Watson, E. B. (2010). Li diffusion in zircon. Contributions to Mineralogy and Petrology, 160, 383–390.

    Article  Google Scholar 

  • Chopin, C., & Sobolev, N. V. (1995). Principal mineralogic indicators of UHP in crustal rocks. In R. G. Coleman & X. M. Wang (Eds.) Ultrahigh-pressure metamorphism (pp. 96–133). Cambridge University Press.

    Google Scholar 

  • Clemens, J. D. (1984). Water contents of silicic to intermediate magmas. Lithos, 17, 273–287.

    Article  Google Scholar 

  • Clemens, J. D., & Vielzeuf, D. (1987). Constraints on melting and magma production in the crust. Earth and Planetary Science Letters, 86, 287–306.

    Article  Google Scholar 

  • Colchen, M., LeFort, P., & Pêcher, A. (1986). Recherches géologiques dans l’Himalaya du Népal Annapurna, Manaslu, Ganesh: Paris (p. 136). Paris: Editions du Centre National de la Recherche Scientifique.

    Google Scholar 

  • Collins, W. J., Belousova, E. A., Kemp, A. I. S., & Murphy, J. B. (2011). Two contrasting Phanerozoic orogenic systems revealed by Hf isotopic data. Nature Geoscience, 4, 333–337.

    Article  Google Scholar 

  • Compston, W., & Pidgeon, R. T. (1986). Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature, 321, 766–769.

    Article  Google Scholar 

  • Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A., & Parrish, R. R. (2015). Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer 624 Calibration Part I). Geochimica et Cosmochimica Acta, 164, 464–480.

    Article  Google Scholar 

  • Crowley, J. L., Myers, J. S., Sylvester, P. J., & Cox, R. A. (2005). Detrital zircon from the Jack Hills and Mount Narryer, Western Australia: Evidence for diverse >4.0 Ga source rocks. The Journal of Geology, 113, 239–263.

    Article  Google Scholar 

  • Darling, J., Storey, C., & Hawkesworth, C. (2009). Impact melt sheet zircons and their implications for the Hadean crust. Geology, 37, 927–930.

    Article  Google Scholar 

  • Dasgupta, R. (2013). Ingassing storage and outgassing of terrestrial carbon through geologic time. Reviews in Mineralogy and Geochemistry, 75, 183–229.

    Article  Google Scholar 

  • Dobrzhinetskaya, L., Wirth, R., & Green, H. (2014). Diamonds in Earthʼs oldest zircons from Jack Hills conglomerate Australia are contamination. Earth and Planetary Science Letters, 387, 212–218.

    Article  Google Scholar 

  • Duke, E. F., & Rumble, D. (1986). Textural and isotopic variations in graphite from plutonic rocks South-Central New Hampshire. Contributions to Mineralogy and Petrology, 93, 409–419.

    Article  Google Scholar 

  • Ewing, R. C., Meldrum, A., Wang, L., Weber, W. J., & Corrales, L. R. (2003). Radiation effects in zircon. Revs. Mineral. Geochem., 53, 387–425.

    Article  Google Scholar 

  • Ferry, J. M., & Watson, E. B. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429–437.

    Article  Google Scholar 

  • Franzson, H., Guðfinnsson, G. H., Helgadóttir, H. M., & Frolova, J. (2010). Porosity, density and chemical composition relationships in altered Icelandic hyaloclastites. In P. Birkle & S. Torres-Alvarado (Eds.) Water-rock interactions (pp. 199–202). Taylor and Francis Group, London.

    Google Scholar 

  • Freund, F., Kathrein, H., Wengeler, H., Knobel, R., & Heinen, H. J. (1980). Carbon in solid solution in forsterite—A key to the intractable nature of reduced carbon in terrestrial and cosmogenic rocks. Geochimica et Cosmochimica Acta, 44, 1319–1333.

    Article  Google Scholar 

  • Frezzotti, M.L., Di Vincenzo, G., Ghezzo, C., and Burke, E.A. (1994) Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range (northern Victoria Land Antarctica) Contributions to Mineralogy and Petrology, 117, 111–123.

    Google Scholar 

  • Froude, D. O., Ireland, T. R., Kinny, P. D., Williams, I. S., & Compston, W. (1983). Ion microprobe identification of 4100–4200 Myr-old terrestrial zircons. Nature, 304, 616–618.

    Article  Google Scholar 

  • Fu, B., Page, F. Z., Cavosie, A. J., Fournelle, N. T. Kita, N. T., Lackey, J. S., Wilde, S. A., & Valley, J. W. (2008). Ti-in-zircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology, 156, 197–215.

    Google Scholar 

  • Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., et al. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35, 643–646.

    Article  Google Scholar 

  • Guitreau, M., Blichert-Toft, J., Martin, H., Mojzsis, S. J., & Albarède, F. (2012). Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust. Earth and Planetary Science Letters, 337, 211–223.

    Article  Google Scholar 

  • Hamilton, W. B. (2007). Earth’s first two billion years—The era of internally mobile crust. Geological Society of America-Memoirs, 200, 233–296.

    Article  Google Scholar 

  • Hanchar, J. M., & Hoskin, P. W. O. (2003). Zircon (Vol. 53). Washington, DC: Revs. Mineral. Geochem.

    Google Scholar 

  • Harris, N., & Inger, S. (1992). Trace element modelling of pelite-derived granites. Contributions to Mineralogy and Petrology, 110, 46–56.

    Article  Google Scholar 

  • Harrison, T. M. (2009). The Hadean crust: Evidence from >4 Ga zircons. Annual Reviews of Earth and Planetary Sciences, 37, 479–505.

    Article  Google Scholar 

  • Harrison, T. M., Bell, E. A., & Boehnke, P. (2017). Hadean zircon petrochronology. Reviews in Mineralogy and Geochemistry, 83, 329–363.

    Article  Google Scholar 

  • Harrison, T. M., Blichert-Toft, J., Müller, W., Albarede, F., Holden, P., & Mojzsis, S. J. (2005). Heterogeneous Hadean hafnium: Evidence of continental crust by 4.4–4.5 Ga. Science, 310, 1947–1950.

    Article  Google Scholar 

  • Harrison, T. M., Schmitt, A. K., McCulloch, M. T., & Lovera, O. M. (2008). Early (≥ 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth and Planetary Science Letters, 268, 476–486.

    Article  Google Scholar 

  • Harrison, T. M., Watson, E. B., & Aikman, A. K. (2007). Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35, 635–638.

    Article  Google Scholar 

  • Harrison, T. M., & Wielicki, M. M. (2016). From the Himalaya to the Hadean. American Mineralogist, 101, 1348–1359.

    Article  Google Scholar 

  • Hayes, J. M., Waldbauer, J. R. (2006). The carbon cycle and associated redox processes through time. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 931–950.

    Google Scholar 

  • Hellebrand, E., Möller, A., Whitehouse, M., & Cannat, M. (2007). Formation of oceanic zircons. Geochimica et Cosmochimica Acta Suppl., 71, A391.

    Google Scholar 

  • Hofmann, A. E., Valley, J. W., Watson, E. B., Cavosie, A. J., & Eiler, J. M. (2009). Sub-micron scale distributions of trace elements in zircon. Contributions to Mineralogy and Petrology, 158, 317–335.

    Article  Google Scholar 

  • Holden, P., Lanc, P., Ireland, T. R., Harrison, T. M., Foster, J. J., & Bruce, Z. P. (2009). Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains. International Journal of Mass Spectrometry, 286, 53–63.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2008). Low heat flow inferred from >4 Ga zircons suggests Hadean plate boundary interactions. Nature, 456, 493–496.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2010). Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth and Planetary Science Letters, 298, 367–376.

    Article  Google Scholar 

  • Hopkins, M., Harrison, T. M., & Manning, C. E. (2012). Comment: Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills, Australia: Implications for the Hadean Earth. Geology, 40, e281–e281.

    Google Scholar 

  • Hoskin, P. W. O., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry, 53, 27–62.

    Article  Google Scholar 

  • House, C. H. (2015). Penciling in details of the Hadean. Proceedings of the National Academy of Sciences, 112, 14410–14411.

    Article  Google Scholar 

  • Ibanez-Mejia, M., & Tissot, F. (2018). Zr stable isotope fractionation during magmatic processes. Goldschmidt Abstracts, 1115.

    Google Scholar 

  • Iizuka, T., Yamaguchi, T., Hibiya, Y., & Amelin, Y. (2015). Meteorite zircon constraints on the bulk Lu − Hf isotope composition and early differentiation of the Earth. Proceedings of the National Academy of Sciences, 112, 5331–5336.

    Article  Google Scholar 

  • Ingebritsen, S. E., & Manning, C. E. (2002). Diffuse fluid flux through orogenic belts: Implications for the world ocean. Proceedings of the National Academy of Sciences, 99, 9113–9116.

    Article  Google Scholar 

  • Inger, S., & Harris, N. B. W. (1992). Tectonothermal evolution of the High Himalayan crystalline sequence, Langtang Valley, northern Nepal. Journal of Metamorphic Geology, 10, 439–452.

    Article  Google Scholar 

  • Inglis, E. C., Moynier, F., Creech, J., Deng, Z., Day, J. M., Teng, F. Z., et al. (2019). Isotopic fractionation of zirconium during magmatic differentiation and the stable isotope composition of the silicate Earth. Geochimica et Cosmochimica Acta, 250, 311–323.

    Article  Google Scholar 

  • Ishihara, S. (1977). The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293–305.

    Google Scholar 

  • Javoy, M., Pineau, F., & Iiyama, I. (1978). Experimental determination of the isotopic fractionation between gaseous CO2 and carbon dissolved in tholeiitic magma. Contributions to Mineralogy and Petrology, 67, 35–39.

    Article  Google Scholar 

  • Jennings, E. S., Marschall, H. R., Hawkesworth, C. J., & Storey, C. D. (2011). Characterization of magma from inclusions in zircon: Apatite and biotite work well feldspar less so. Geology, 39, 863–866.

    Article  Google Scholar 

  • Kelemen, P. B., & Manning, C. E. (2015). Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proceedings of the National Academy of Sciences, 112, E3997–E4006.

    Article  Google Scholar 

  • Kemp, A. I. S., Wilde, S. A., Hawkesworth, C. J., Coath, C. D., Nemchin, A., Pidgeon, R. T., et al. (2010). Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth and Planetary Science Letters, 296, 45–56.

    Article  Google Scholar 

  • Keppler, H., Wiedenbeck, M., & Shcheka, S. S. (2003). Carbon solubility in olivine and the mode of carbon storage in the Earth’s mantle. Nature, 424, 414–416.

    Article  Google Scholar 

  • Kinny, P. D., Compston, W., & Williams, I. S. (1991). A reconnaissance ion-probe study of hafnium isotopes in zircons. Geochimica et Cosmochimica Acta, 55, 849–859.

    Article  Google Scholar 

  • Kirkpatrick, H., Harrison, T. M., Liu, M. C., Tissot, F., & Ibanez-Mejia, M. (2019). In situ δ94/90Zr variations in zircon. Goldschmidt Abstracts.

    Google Scholar 

  • Korenaga, J. (2018). Crustal evolution and mantle dynamics through Earth history. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376, 20170408.

    Article  Google Scholar 

  • Liu, J., Ye, K., Maruyama, S., Cong, B., & Fan, H. (2001). Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains China. The Journal of Geology, 109, 523–535.

    Article  Google Scholar 

  • Maas, R., Kinny, P. D., Williams, I. S., Froude, D. O., & Compston, W. (1992). The Earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills Western Australia. Geochimica et Cosmochimica Acta, 56, 1281–1300.

    Article  Google Scholar 

  • Maas, R., & McCulloch, M. T. (1991). The provenance of Archean clastic metasediments in the Narryer Gneiss Complex, Western Australia: Trace element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons. Geochimica et Cosmochimica Acta, 55(7), 1915–1932.

    Google Scholar 

  • Maher, K. A., & Stevenson, D. J. (1988). Impact frustration of the origin of life. Nature, 331, 612–614.

    Article  Google Scholar 

  • Marty, B., Alexander, C. M. D., & Raymond, S. N. (2013). Primordial origins of Earth’s carbon. Reviews in Mineralogy and Geochemistry, 75, 149–181.

    Article  Google Scholar 

  • Mathez, E. A., Blacic, J. D., Beery, J., Maggiore, C., & Hollander, M. (1984). Carbon abundances in mantle minerals determined by nuclear reaction analysis. Geophysical Research Letters, 11, 947–950.

    Article  Google Scholar 

  • McKeegan, K. D., Kudryavtsev, A. B., & Schopf, J. W. (2007). Raman and ion microscopic imagery of graphitic inclusions in apatite from older than 3830 Ma Akilia supracrustal rocks, west Greenland. Geology, 35, 591–594.

    Article  Google Scholar 

  • Menneken, M., Nemchin, A. A., Geisler, T., Pidgeon, R. T., & Wilde, S. A. (2007). Hadean diamonds in zircon from Jack Hills Western Australia. Nature, 448, 917–920.

    Article  Google Scholar 

  • Mojzsis, S. J. (2007). Sulphur on the early earth. Developments in Precambrian Geology, 15, 23–970.

    Google Scholar 

  • Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., Harrison, T. M., Nutman, A. P., & Friend, C. R. L. (1996). Evidence for life on Earth by 3800 Myr. Nature, 384, 55–59.

    Article  Google Scholar 

  • Mojzsis, S. J., Harrison, T. M., & Pidgeon, R. T. (2001). Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature, 409, 178–181.

    Article  Google Scholar 

  • Nebel-Jacobsen, Y., Munker, C., Nebel, O., Gerdes, A., Mezger, K., & Nelson, D. R. (2010). Reworking of Earth’s first crust: constraints from Hf isotopes in Archean zircons from Mt. Narryer Australia. Precambrian Research, 182, 175–186.

    Article  Google Scholar 

  • Nemchin, A. A., Whitehouse, M. J., Menneken, M., Geisler, T., Pidgeon, R. T., & Wilde, S. A. (2008). A light carbon reservoir recorded in zircon-hosted diamond from the Jack Hills. Nature, 454(7200), 92–95.

    Google Scholar 

  • O’Neil, J. R., & Chappell, B. W. (1977). Oxygen and hydrogen isotope relations in the Berridale Batholith, Southeastern Australia. Journal of the Geological Society, London, 133, 559–571.

    Article  Google Scholar 

  • Oberheuser, G., Kathrein, H., Demortier, G., Gonska, H., & Freund, F. (1983). Carbon in olivine single crystals analyzed by the 12C(d p)13C method and by photoelectron spectroscopy. Geochimica et Cosmochimica Acta, 47, 1117–1129.

    Article  Google Scholar 

  • Ohmoto, H., & Kerrick, D. M. (1977). Devolatilization equilibria in graphitic systems. American Journal of Science, 277, 1013–1044.

    Article  Google Scholar 

  • Ozima, M., & Podosek, F. A. (2002). Noble Gas Geochemistry. Cambridge, UK: Cambridge Univ. Press.

    Google Scholar 

  • Peck, W. H., Valley, J. W., Wilde, S. A., & Graham, C. M. (2001). Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochimica et Cosmochimica Acta, 65, 4215–4229.

    Article  Google Scholar 

  • Pierrehumbert, R. T. (2005). Climate dynamics of a hard snowball Earth. Journal of Geophysical Research, 110. https://doi.org/10.1029/2004jd005162.

  • Pollack, H. N., Hurter, S. J., & Johnson, J. R. (1993). Heat flow from the earth’s interior: Analysis of the global data set. Reviews of Geophysics, 31, 267–280.

    Article  Google Scholar 

  • Rasmussen, B., Fletcher, I. R., Muhling, J. R., Gregory, C. J., & Wilde, S. A. (2011). Metamorphic replacement of mineral inclusions in detrital zircon from Jack Hills Australia: Implications for the Hadean Earth. Geology, 39, 1143–1146.

    Article  Google Scholar 

  • Rasmussen, B., Fletcher, I. R., Muhling, J. R., & Wilde, S. A. (2010). In situ U-Th-Pb geochronology of monazite and xenotime from the Jack Hills belt: Implications for the age of deposition and metamorphism of Hadean zircons. Precambrian Research, 180, 26–46.

    Article  Google Scholar 

  • Rollinson, H. (2008). Ophiolitic trondhjemites: A possible analogue for Hadean felsic ‘crust’. Terra Nova, 20, 364–369.

    Article  Google Scholar 

  • Rosas, J. C., & Korenaga, J. (2018). Rapid crustal growth and efficient crustal recycling in the early Earth: Implications for Hadean and Archean geodynamics. Earth and Planetary Science Letters, 494, 42–49.

    Article  Google Scholar 

  • Rosenthal, A., Hauri, E. H., & Hirschmann, M. M. (2015). Experimental determination of C F and H partitioning between mantle minerals and carbonated basalt CO2/Ba and CO2/Nb systematics of partial melting and the CO2 contents of basaltic source regions. Earth and Planetary Science Letters, 412, 77–87.

    Article  Google Scholar 

  • Rosing, M. T. (1999). 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science, 283, 674–676.

    Article  Google Scholar 

  • Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chemical Geology, 184, 123–138.

    Article  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2003). Composition of the continental crust. Treatise on Geochemistry, 3, 1–64.

    Google Scholar 

  • Schopf, J. W. (2014). Geological evidence of oxygenic photosynthesis and the biotic response to the 2400–2200 Ma “Great Oxidation Event”. Biochemistry (Moscow), 79, 165–177.

    Article  Google Scholar 

  • Seifert, W., Thomas, R., Rhede, D., & Förster, H. J. (2010). Origin of coexisting wüstite Mg-Fe and REE phosphate minerals in graphite-bearing fluorapatite from the Rumburk granite. European Journal of Mineralogy, 22, 495–507.

    Article  Google Scholar 

  • Sen, S., Widgeon, S. J., Navrotsky, A., Mera, G., Tavakoli, A., Ionescu, E., et al. (2013). Carbon substitution for oxygen in silicates in planetary interiors. Proceedings of the National Academy of Sciences, 110, 15904–15907.

    Article  Google Scholar 

  • Shcheka, S. S., Wiedenbeck, M., Frost, D. J., & Keppler, H. (2006). Carbon solubility in mantle minerals. Earth and Planetary Science Letters, 245, 730–742.

    Article  Google Scholar 

  • Shirey, S. B., Kamber, B. S., Whitehouse, M. J., Mueller, P. A., & Basu, A. R. (2008). A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. Geological Society of America Special Paper, 440, 1–29.

    Google Scholar 

  • Sleep, N. H. (2000). Evolution of the mode of convection within terrestrial planets. Journal of Geophysical Research: Planets, 105, 17563–17578.

    Article  Google Scholar 

  • Smith, J. V. (1981). The first 800 million years of earths history. Philosophical Transactions of the Royal Society London Ser. A 301, 401–422.

    Google Scholar 

  • Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219, 311–324.

    Google Scholar 

  • Solomon, S. C. (1980). Differentiation of crusts and cores of the terrestrial planets: Lessons for the early Earth? Precambrian Research, 10, 177–194.

    Article  Google Scholar 

  • Song, S., Zhang, L., Niu, Y., Su, L., Jian, P., & Liu, D. (2005). Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. Earth and Planetary Science Letters, 234, 99–118.

    Article  Google Scholar 

  • Spaggiari, C. V., Pidgeon, R. T., & Wilde, S. A. (2007). The Jack Hills greenstone belt, Western Australia Part 2: lithological relationships and implications for the deposition of ≥4.0 Ga detrital zircons. Precambrian Research, 155, 261–286.

    Article  Google Scholar 

  • Spear, F. S. (1993). Metamorphic phase equilibria and pressure-temperature-time-paths. Chantilly, VA: Mineral Society of America.

    Google Scholar 

  • Stefánsson, A., & Barnes, J. D. (2016). Chlorine isotope geochemistry of Icelandic thermal fluids: Implications for geothermal system behavior at divergent plate boundaries. Earth and Planetary Science Letters, 449, 69–78.

    Article  Google Scholar 

  • Tabata, H., Yamauchi, K., Maruyama, S., & Liou, J. G. (1998) Tracing the extent of a UHP metamorphic terrane: Mineral-inclusion study of zircons in gneisses from the Dabie Shan. In When Continents Collide: Geodynamics and geochemistry of ultrahigh-pressure rocks (pp. 261–273). Netherlands, NL: Springer.

    Google Scholar 

  • Tang, H., Bell, E. A., Boehnke, P., Barboni, M., & Harrison, T. M. (2017, December). Sulfur in zircons: A new window into melt chemistry. In AGU Fall Meeting Abstracts.

    Google Scholar 

  • Tang, M., Rudnick, R. L., McDonough, W. F., Bose, M., & Goreva, Y. (2017). Multi-mode Li diffusion in natural zircons: Evidence for diffusion in the presence of step-function concentration boundaries. Earth and Planetary Science Letters, 474, 110–119.

    Article  Google Scholar 

  • Tang, H., Trail, D., Bell, E. A., & Harrison, T. M. (2019). Zircon halogen geochemistry: Insights into Hadean-Archean fluids. Geochemical Perspectives Letters, 49–53.

    Google Scholar 

  • Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., & Bono, R. K. (2015). A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science, 349, 521–524.

    Article  Google Scholar 

  • Taylor, H.P., & Sheppard, S. M. F. (1986). Igneous rocks. I. Processes of isotopic fractionation and isotope systematics. In J. W. Valley, H. P. Taylor, Jr, & J. R. O’Neil (Eds.), Stable isotopes in high temperature processes. Reviews in Mineralogy (Vol. 16, pp. 227–271).

    Google Scholar 

  • Taylor, D. J., McKeegan, K. D., & Harrison, T. M. (2009). 176Lu-176Hf zircon evidence for rapid lunar differentiation. Earth and Planetary Science Letters, 279, 157–164.

    Google Scholar 

  • Tingle, T. N., Green, H. W., & Finnerty, A. A. (1988). Experiments and observations bearing on the solubility and diffusivity of carbon in olivine. Journal of Geophysical Research: Solid Earth, 93, 15289–15304.

    Article  Google Scholar 

  • Tissot, F. L. H., IIbanez-Mejia, M., Boehnke, P., Dauphas, N., McGee, D., Grove, T. L. and Harrison, T. M. (2019). Variable 238U/235U between single zircon grains. Journal of Analytical Atomic Spectrometry. https://doi.org/10.1039/c9ja00205g.

  • Trail, D., Bindeman, I. N., Watson, E. B., & Schmitt, A. K. (2009). Experimental calibration of oxygen isotope fractionation between quartz and zircon. Geochimica et Cosmochimica Acta, 73, 7110–7126.

    Article  Google Scholar 

  • Trail, D., Boehnke, P., Savage, P. S., Liu, M. C., Miller, M. L., & Bindeman, I. (2018). Origin and significance of Si and O isotope heterogeneities in Phanerozoic, Archean, and Hadean zircon. Proceedings of the National Academy of Sciences, 115, 10287–10292.

    Article  Google Scholar 

  • Trail, D., Cherniak, D. J., Watson, E. B., Harrison, T. M., Weiss, B. P., & Szumila, I. (2016). Li zoning in zircon as a potential geospeedometer and peak temperature indicator. Contributions to Mineralogy and Petrology, 171, 1–15.

    Article  Google Scholar 

  • Trail, D., Mojzsis, S. J., Harrison, T. M., Schmitt, A. K., Watson, E. B., & Young, E. D. (2007). Constraints on Hadean zircon protoliths from oxygen isotopes, REEs and Ti-thermometry. G3, 8, Q06014.

    Google Scholar 

  • Trail, D., Thomas, J. B., & Watson, E. B. (2011a). The incorporation of hydroxyl into zircon. American Mineralogist, 96, 60–67.

    Article  Google Scholar 

  • Trail, D., Watson, E. B., & Tailby, N. D. (2011b). The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature, 480, 79–82.

    Article  Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamics: Applications of continuum physics to geological problems, 2nd edn. Wiley, New York, NY.

    Google Scholar 

  • Turner, G., Busfield, A., Crowther, S. A., Harrison, T. M., Mojzsis, S. J., & Gilmour, J. (2007). Pu-Xe, U-Xe, U-Pb chronology and isotope systematics of ancient zircons from Western Australia. Earth and Planetary Science Letters, 261, 491–499.

    Article  Google Scholar 

  • Turner, G., Harrison, T. M., Holland, G., Mojzsis, S. J., & Gilmour, J. (2004). Xenon from extinct 244Pu in ancient terrestrial zircons. Science, 306, 89–91.

    Article  Google Scholar 

  • Ushikubo, T., Kita, N. T., Cavosie, A. J., Wilde, S. A., Rudnick, R. L., & Valley, J. W. (2008). Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth’s earliest crust. Earth and Planetary Science Letters, 272, 666–676.

    Article  Google Scholar 

  • Valley, J. W., Cavosie, A. J., Ushikubo, T., Reinhard, D. A., Lawrence, D. F., Larson, D. J., et al. (2014). Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience, 7, 219–223.

    Article  Google Scholar 

  • Valley, J. W., Chiarenzelli, J. R., & McLelland, J. M. (1994). Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters, 126, 187–206.

    Article  Google Scholar 

  • Valley, J. W., Kinny, P. D., Schulze, D. J., & Spicuzza, M. J. (1998). Zircon megacrysts from kimberlite: Oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology, 133, 1–11.

    Article  Google Scholar 

  • Vidal, P., Cocherie, A., & Le Fort, P. (1982). Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochimica et Cosmochimica Acta, 46, 2279–2292.

    Article  Google Scholar 

  • Wang, Q., & Wilde, S. A. (2018). New constraints on the Hadean to Proterozoic history of the Jack Hills belt, Western Australia. Gondwana Research, 55, 74–91.

    Article  Google Scholar 

  • Ward, P. D., & Brownlee, D. (2000). Rare earth: Why Complex Life is Uncommon in the Universe. New York: Copernicus Books.

    Google Scholar 

  • Watson, E. B., & Cherniak, D. J. (1997). Oxygen diffusion in zircon. Earth and Planetary Science Letters, 148, 527–544.

    Article  Google Scholar 

  • Watson, E. B., & Harrison, T. M. (1983). Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295–304.

    Article  Google Scholar 

  • Watson, E. B., & Harrison, T. M. (2005). Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308, 841–844.

    Article  Google Scholar 

  • Watson, E. B., Wark, D. A., & Thomas, J. B. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413–433.

    Article  Google Scholar 

  • Weiss, B. P., Maloof, A. C., Tailby, N., Ramezani, J., Fu, R. R., Hanus, V., et al. (2015). Pervasive remagnetization of detrital zircon host rocks in the Jack Hills Western Australia and implications for records of the early geodynamo. Earth Planet Sci. Lett., 430, 115–128.

    Article  Google Scholar 

  • Wetherill, G. W. (1972). The beginning of continental evolution. Tectonophysics, 13, 13–45.

    Google Scholar 

  • White, R. W., Powell, R. W., & Holland, T. J. B. (2001). Calculation of partial melting equilibria in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of metamorphic Geology, 19, 139–153.

    Article  Google Scholar 

  • Wielicki, M. M., Harrison, T. M., & Schmitt, A. K. (2012). Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth and Planetary Science Letters, 321, 20–31.

    Article  Google Scholar 

  • Wilde, S. A., Valley, J. W., Peck, W. H., & Graham, C. M. (2001). Evidence form detrital zircons for the existence of continental crust and oceans 4.4 Ga ago. Nature, 409, 175–178.

    Article  Google Scholar 

  • Zahnle, K. J. (2006). Earth’s earliest atmosphere. Elements, 2, 217–222.

    Article  Google Scholar 

  • Zeng, Y., Zhu, Y., & Liu, J. (2001). Carbonaceous material in S-type Xihuashan granite. Geochemical Journal, 35, 145–153.

    Article  Google Scholar 

  • Zhang, W., Zaicong, W. A. N. G., Moynier, F., Inglis, E. C., Tian, S., Liu, Y., et al. (2019). Determination of Zr isotopic ratio in zircons using laser-ablation multiple-collector inductively-coupled-plasma mass-spectrometry. Journal of Analytical Atomic Spectrometry. https://doi.org/10.1039/c9ja00192a.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Mark Harrison .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harrison, T.M. (2020). Hadean Jack Hills Zircon Geochemistry. In: Hadean Earth. Springer, Cham. https://doi.org/10.1007/978-3-030-46687-9_7

Download citation

Publish with us

Policies and ethics