Skip to main content

Concentration of the Intrinsic Volumes of a Convex Body

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2266))

Abstract

The intrinsic volumes are measures of the content of a convex body. This paper applies probabilistic and information-theoretic methods to study the sequence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volume sequence with maximum entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Adiprasito, R. Sanyal, Whitney numbers of arrangements via measure concentration of intrinsic volumes (2016). http://arXiv.org/abs/1606.09412

  2. R.J. Adler, J.E. Taylor, Random fields and geometry. Springer Monographs in Mathematics (Springer, New York, 2007)

    Google Scholar 

  3. D. Amelunxen, M. Lotz, M.B. McCoy, J.A. Tropp, Living on the edge: phase transitions in convex programs with random data. Inf. Inference 3(3), 224–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Artstein-Avidan, A. Giannopoulos, V.D. Milman, Asymptotic geometric analysis. Part I. Mathematical Surveys and Monographs, vol. 202 (American Mathematical Society, Providence, 2015)

    Google Scholar 

  5. K. Ball, Volume ratios and a reverse isoperimetric inequality. J. Lond. Math. Soc. 44(2), 351–359 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Ball, An elementary introduction to modern convex geometry, in Flavors of geometry. Mathematical Sciences Research Institute Publications, vol. 31 (Cambridge Univ. Press, Cambridge, 1997), pp. 1–58

    Google Scholar 

  7. S. Bobkov, M. Madiman, Concentration of the information in data with log-concave distributions. Ann. Probab. 39(4), 1528–1543 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. H.J. Brascamp, E.H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MATH  Google Scholar 

  9. P. Caputo, P. Dai Pra, G. Posta, Convex entropy decay via the Bochner-Bakry-Emery approach. Ann. Inst. Henri Poincaré Probab. Stat. 45(3), 734–753 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Chevet, Processus Gaussiens et volumes mixtes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 36(1), 47–65 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. H. Federer, Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Fradelizi, M. Madiman, L. Wang, Optimal concentration of information content for log-concave densities, in High dimensional probability VII. Progress in Probability, vol. 71 (Springer, Berlin, 2016), pp. 45–60

    Google Scholar 

  13. L. Goldstein, I. Nourdin, G. Peccati, Gaussian phase transitions and conic intrinsic volumes: steining the Steiner formula. Ann. Appl. Probab. 27(1), 1–47 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. P.M. Gruber, Convex and discrete geometry. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336 (Springer, Berlin, 2007)

    Google Scholar 

  15. H. Hadwiger, Beweis eines Funktionalsatzes für konvexe Körper. Abh. Math. Sem. Univ. Hamburg 17, 69–76 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Hadwiger, Additive Funktionale k-dimensionaler Eikörper. I. Arch. Math. 3, 470–478 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, Berlin, 1957)

    Book  MATH  Google Scholar 

  18. H. Hadwiger, Das Wills’sche funktional. Monatsh. Math. 79, 213–221 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. O. Johnson, Log-concavity and the maximum entropy property of the Poisson distribution. Stoch. Process. Appl. 117(6), 791–802 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. D.A. Klain, G.-C. Rota, Introduction to geometric probability. Lezioni Lincee. [Lincei Lectures] (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  21. M.B. McCoy, A geometric analysis of convex demixing (ProQuest LLC, Ann Arbor, 2013). Thesis (Ph.D.)–California Institute of Technology

    Google Scholar 

  22. M.B. McCoy, J.A. Tropp, From Steiner formulas for cones to concentration of intrinsic volumes. Discrete Comput. Geom. 51(4), 926–963 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.B. McCoy, J.A. Tropp, Sharp recovery bounds for convex demixing, with applications. Found. Comput. Math. 14(3), 503–567 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.B. McCoy, J.A. Tropp, The achievable performance of convex demixing. ACM Report 2017-02, California Institute of Technology (2017). Manuscript dated 28 Sep. 2013

    Google Scholar 

  25. P. McMullen, Non-linear angle-sum relations for polyhedral cones and polytopes. Math. Proc. Cambridge Philos. Soc. 78(2), 247–261 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. P. McMullen, Inequalities between intrinsic volumes. Monatsh. Math. 111(1), 47–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. V.H. Nguyen, Inégalités Fonctionelles et Convexité. Ph.D. Thesis, Université Pierrre et Marie Curie (Paris VI) (2013)

    Google Scholar 

  28. G. Paouris, P. Pivovarov, P. Valettas. On a quantitative reversal of Alexandrov’s inequality. Trans. Am. Math. Soc. 371(5), 3309–3324 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. G. Pisier, The volume of convex bodies and Banach space geometry. Cambridge Tracts in Mathematics, vol. 94 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  30. L.A. SantalĂł, Integral geometry and geometric probability. Cambridge Mathematical Library, 2nd edn. (Cambridge University Press, Cambridge, 2004). With a foreword by Mark Kac

    Google Scholar 

  31. A. Saumard, J.A. Wellner, Log-concavity and strong log-concavity: a review. Stat. Surv. 8, 45–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Schneider, Convex bodies: the Brunn-Minkowski theory. Encyclopedia of Mathematics and its Applications, vol. 151, expanded edn. (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  33. R. Schneider, W. Weil, Stochastic and integral geometry. Probability and its Applications (New York) (Springer, Berlin, 2008)

    Google Scholar 

  34. Y. Shenfeld, R. van Handel, Mixed volumes and the Bochner method. Proc. Amer. Math. Soc. 147, 5385–5402 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. R.A. Vitale, The Wills functional and Gaussian processes. Ann. Probab. 24(4), 2172–2178 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. L. Wang, Heat Capacity Bound, Energy Fluctuations and Convexity (ProQuest LLC, Ann Arbor, 2014). Thesis (Ph.D.)–Yale University

    Google Scholar 

  37. J.M. Wills, Zur Gitterpunktanzahl konvexer Mengen. Elem. Math. 28, 57–63 (1973)

    MathSciNet  MATH  Google Scholar 

  38. H.S. Wilf, generatingfunctionology, 2nd edn. (Academic Press, Boston, 1994)

    MATH  Google Scholar 

  39. Y. Yu, On the maximum entropy properties of the binomial distribution. IEEE Trans. Inform. Theory 54(7), 3351–3353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Emmanuel Milman for directing us to the literature on concentration of information. Dennis Amelunxen, Sergey Bobkov, and Michel Ledoux also gave feedback at an early stage of this project. Ramon Van Handel provided valuable comments and citations, including the fact that ULC sequences concentrate. We thank the anonymous referee for a careful reading and constructive remarks.

Parts of this research were completed at Luxembourg University and at the Institute for Mathematics and its Applications (IMA) at the University of Minnesota. Giovanni Peccati is supported by the internal research project STARS (R-AGR-0502-10) at Luxembourg University. Joel A. Tropp gratefully acknowledges support from ONR award N00014-11-1002 and the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel A. Tropp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lotz, M., McCoy, M.B., Nourdin, I., Peccati, G., Tropp, J.A. (2020). Concentration of the Intrinsic Volumes of a Convex Body. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2266. Springer, Cham. https://doi.org/10.1007/978-3-030-46762-3_6

Download citation

Publish with us

Policies and ethics