Skip to main content

HGF/c-Met Signalling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1270))

Abstract

Recently, it has become clearer that tumor plasticity increases the chance that cancer cells could acquire new mechanisms to escape immune surveillance, become resistant to conventional drugs, and spread to distant sites.

Effectively, tumor plasticity drives adaptive response of cancer cells to hypoxia and nutrient deprivation leading to stimulation of neoangionesis or tumor escape. Therefore, tumor plasticity is believed to be a great contributor in recurrence and metastatic dissemination of cancer cells. Importantly, it could be an Achilles’ heel of cancer if we could identify molecular mechanisms dictating this phenotype.

The reactivation of stem-like signalling pathways is considered a great determinant of tumor plasticity; in addition, a key role has been also attributed to tumor microenvironment (TME). Indeed, it has been proved that cancer cells interact with different cells in the surrounding extracellular matrix (ECM). Interestingly, well-established communication represents a potential allied in maintenance of a plastic phenotype in cancer cells supporting tumor growth and spread. An important signalling pathway mediating cancer cell-TME crosstalk is represented by the HGF/c-Met signalling.

Here, we review the role of the HGF/c-Met signalling in tumor-stroma crosstalk focusing on novel findings underlying its role in tumor plasticity, immune escape, and development of adaptive mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perou CM, Sørlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lønning PE, Børresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  Google Scholar 

  2. van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415(6871):530–536

    Article  Google Scholar 

  3. De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF et al (2013) Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med 19:614–618

    Article  CAS  Google Scholar 

  4. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M et al (2013) Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med 10:e1001453

    Article  CAS  Google Scholar 

  5. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LC, Lannon WA, Grotzinger C, Del Rio M et al (2013) A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med 19:619–625

    Article  CAS  Google Scholar 

  6. Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296

    Article  CAS  Google Scholar 

  7. Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41

    Article  CAS  Google Scholar 

  8. Plaks V, Kong N, Werb Z (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16(3):225–238

    Article  CAS  Google Scholar 

  9. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291

    Article  CAS  Google Scholar 

  10. Dalerba P, Cho RW, Clarke MF (2007) Cancer stem cells: models and concepts. Annu Rev Med 58:267–284

    Article  CAS  Google Scholar 

  11. Diehn M, Cho RW, Clarke MF (2009) Therapeutic implications of the cancer stem cell hypothesis. Semin Radiat Oncol 19(2):78–86

    Article  Google Scholar 

  12. Boccaccio C, Comoglio PM (2006) Invasive growth: a MET-driven genetic programme for cancer stem cells. Nat Rev Cancer. 6(8):637–645

    Article  CAS  Google Scholar 

  13. Stoker M, Gherardi E, Perryman M, Gray J (1987) Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 327(6119):239–242

    Article  CAS  Google Scholar 

  14. Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, Narsimhan RP, Hartmann G, Zarnegar R, Michalopoulos GK et al (1991) Scatter factor and hepatocyte growth factor are indistinguishable ligands for the met receptor. EMBO J. 10(10):2867–2878

    Article  CAS  Google Scholar 

  15. Weidner KM, Di Cesare S, Sachs M et al (1996) Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384:173–176

    Article  CAS  Google Scholar 

  16. Graziani A, Gramaglia D, dalla Zonca P et al (1993) Hepatocyte growth factor/scatter factor stimulates the Ras-guanine nucleotide exchanger. J Biol Chem 268:9165–9168

    CAS  Google Scholar 

  17. Xiao GH, Jeffers M, Bellacosa A et al (2001) Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc Natl Acad Sci U S A 98:247–252

    Article  CAS  Google Scholar 

  18. Syed ZA, Yin W, Hughes K et al (2011) HGF/c-met/Stat3 signaling during skin tumor cell invasion: indications for a positive feedback loop. BMC Cancer 11:180

    Article  CAS  Google Scholar 

  19. Sangwan V, Paliouras GN, Cheng A et al (2006) Protein tyrosine phosphatase 1B deficiency protects against Fas induced hepatic failure. J Biol Chem 281:221–228

    Article  CAS  Google Scholar 

  20. Organ SL, Tsao MS (2011) An overview of the c-MET signaling pathway. Ther Adv Med Oncol 3:S7–S19

    Article  CAS  Google Scholar 

  21. Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11:834–848

    Article  CAS  Google Scholar 

  22. Tsarfaty I, Rong S, Resau JH, Rulong S, da Silva PP, Vande Woude GF (1994) The Met proto-oncogene mesenchymal to epithelial cell conversion. Science 263(5143):98–101

    Article  CAS  Google Scholar 

  23. Andermarcher E, Surani MA, Gherardi E (1996) Co-expression of the HGF/SF and c-met genes during early mouse embryogenesis precedes reciprocal expression in adjacent tissues during organogenesis. Dev Genet 18(3):254–266

    Article  CAS  Google Scholar 

  24. Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol. 123(1):223–235

    Article  CAS  Google Scholar 

  25. Latimer AJ, Jessen JR (2008) Hgf/c-met expression and functional analysis during zebrafish embryogenesis. Dev Dyn. 237(12):3904–3915

    Article  CAS  Google Scholar 

  26. Huh CG, Factor VM, Sánchez A, Uchida K, Conner EA, Thorgeirsson SS (2004) Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proc Natl Acad Sci U S A. 101(13):4477–4482

    Article  CAS  Google Scholar 

  27. Borowiak M, Garratt AN, Wüstefeld T, Strehle M, Trautwein C, Birchmeier C (2004) Met provides essential signals for liver regeneration. Proc Natl Acad Sci U S A. 101(29):10608–10613

    Article  CAS  Google Scholar 

  28. Ma H, Saenko M, Opuko A, Togawa A, Soda K, Marlier A, Moeckel GW, Cantley LG, Ishibe S (2009) Deletion of the Met receptor in the collecting duct decreases renal repair following ureteral obstruction. Kidney Int 76:868–876

    Article  CAS  Google Scholar 

  29. Perdomo G, Martinez-Brocca MA, Bhatt BA, Brown NF, O’Doherty RM, Garcia-Ocaña A (2008) Hepatocyte growth factor is a novel stimulator of glucose uptake and metabolism in skeletal muscle cells. J Biol Chem. 283(20):13700–13706

    Article  CAS  Google Scholar 

  30. Fafalios A, Ma J, Tan X, Stoops J, Luo J, Defrances MC, Zarnegar R (2011) A hepatocyte growth factor receptor (Met)-insulin receptor hybrid governs hepatic glucose metabolism. Nat Med. 17(12):1577–1584

    Article  CAS  Google Scholar 

  31. García-Ocaña A, Vasavada RC, Cebrian A, Reddy V, Takane KK, López-Talavera JC, Stewart AF (2001) Transgenic overexpression of hepatocyte growth factor in the beta-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes. 50(12):2752–2762

    Article  Google Scholar 

  32. Oliveira AG, AraĂşjo TG, Carvalho BM, Rocha GZ, Santos A, Saad MJA (2018) The Role of Hepatocyte Growth Factor (HGF) in insulin resistance and diabetes. Front Endocrinol (Lausanne) 9:503

    Article  Google Scholar 

  33. Dai C, Huh CG, Thorgeirsson SS, Liu Y (2005) Beta-cell-specific ablation of the hepatocyte growth factor receptor results in reduced islet size, impaired insulin secretion, and glucose intolerance. Am J Pathol. 167:429–436. https://doi.org/10.1016/S0002-9440(10)62987-2

    Article  CAS  Google Scholar 

  34. Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S (2016) The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: diverse roles in modulating immune cell functions. Cytokine. 82:125–139

    Article  CAS  Google Scholar 

  35. Ding S, Merkulova-Rainon T, Han ZC, Tobelem G (2003) HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood. 101(12):4816–4822

    Article  CAS  Google Scholar 

  36. Thompson BL, Levitt P (2015) Complete or partial reduction of the Met receptor tyrosine kinase in distinct circuits differentially impacts mouse behavior. J Neurodev Disord 7:35

    Article  Google Scholar 

  37. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 12(2):89–103

    Article  CAS  Google Scholar 

  38. Danilkovitch-Miagkova A, Zbar B (2002) Dysregulation of Met receptor tyrosine kinase activity in invasive tumors. J Clin Invest 109:863–867

    Article  CAS  Google Scholar 

  39. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D et al (2007) Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A 104:20007–20012

    Article  CAS  Google Scholar 

  40. Tong CY, Hui AB, Yin XL, Pang JC, Zhu XL, Poon WS et al (2004) Detection of oncogene amplifications in medulloblastomas by comparative genomic hybridization and array-based comparative genomic hybridization. J Neurosurg 100:187–193

    CAS  Google Scholar 

  41. Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta MG, Buttitta F, Incarbone M, Toschi L, Finocchiaro G, Destro A, Terracciano L, Roncalli M, Alloisio M, Santoro A, Varella-Garcia M (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 27(10):1667–1674

    Article  Google Scholar 

  42. Umeki K, Shiota G, Kawasaki H (1999) Clinical significance of c-met oncogene alterations in human colorectal cancer. Oncology 56:314–312

    Article  CAS  Google Scholar 

  43. Schmidt LS, Nickerson ML, Angeloni D, Glenn GM, Walther MM, Albert PS, Warren MB, Choyke PL, Torres-Cabala CA, Merino MJ, Brunet J, Berez V, Borras J, Sesia G, Middelton L, Phillips JL, Stolle C, Zbar B, Pautler SE, Linehan WM (2004) Early onset hereditary papillary renal carcinoma: germline missense mutations in the tyrosine kinase domain of the met proto-oncogene. J Urol. 172(4 Pt 1):1256–1261

    Article  Google Scholar 

  44. Tanyi J, Tory K, Rigó J Jr, Nagy B, Papp Z (1999) Evaluation of the tyrosine kinase domain of the Met protooncogene in sporadic ovarian carcinomas. Pathol Oncol Res. 5(3):187–191

    Article  CAS  Google Scholar 

  45. Lee JH, Han SU, Cho H, Jennings B, Gerrard B, Dean M, Schmidt L, Zbar B, Vande Woude GF (2000) A novel germ line juxta-membrane Met mutation in human gastric cancer. Oncogene 19:4947–4953

    Article  CAS  Google Scholar 

  46. Ma PC, Kijima T, Maulik G, Fox EA, Sattler M, Griffin JD, Johnson BE, Salgia R (2003) c-MET mutational analysis in small cell lung cancer: novel juxtamembrane domain mutations regulating cytoskeletal functions. Cancer Res 63:6272–6281

    CAS  Google Scholar 

  47. Wasenius VM, Hemmer S, Karjalainen-Lindsberg ML, Nupponen NN, Franssila K, Joensuu H (2005) MET receptor tyrosine kinase sequence alterations in differentiated thyroid carcinoma. Am J Surg Pathol 29(4):544–549

    Article  Google Scholar 

  48. Park WS, Dong SM, Kim SY, Na EY, Shin MS, Pi JH, Kim BJ, Bae JH, Hong YK, Lee KS, Lee SH, Yoo NJ, Jang JJ, Pack S, Zhuang Z, Schmidt L, Zbar B, Lee JY (1999) Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 59(2):307–310

    CAS  Google Scholar 

  49. Kataoka H, Hamasuna R, Itoh H, Kitamura N, Koono M (2000) Activation of hepatocyte growth factor/scatter factor in colorectal carcinoma. Cancer Res. 60:6148–6159

    CAS  Google Scholar 

  50. Parr C, Watkins G, Mansel RE, Jiang WG (2004) The hepatocyte growth factor regulatory factors in human breast cancer. Clin. Cancer Res. 10:202–211

    Article  CAS  Google Scholar 

  51. Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, Molinolo AA, Gutkind JS, Bugge TH (2011) c-MET-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 30:2003–2016

    Article  CAS  Google Scholar 

  52. Fukuura T, Miki C, Inoue T, Matsumoto K, Suzuki H (1998) Serum hepatocyte growth factor as an index of disease status of patients with colorectal carcinoma. Br J Cancer. 78(4):454–459

    Article  CAS  Google Scholar 

  53. Toiyama Y, Miki C, Inoue Y, Okugawa Y, Tanaka K, Kusunoki M (2009) Serum hepatocyte growth factor as a prognostic marker for stage II or III colorectal cancer patients. Int J Cancer. 125(7):1657–1662

    Article  CAS  Google Scholar 

  54. Taniguchi T, Toi M, Inada K, Imazawa T, Yamamoto Y, Tominaga T (1995) Serum concentrations of hepatocyte growth factor in breast cancer patients. Clin Cancer Res. 1(9):1031–1034

    CAS  Google Scholar 

  55. Qian C-N, Guo X, Cao B, Kort EJ, Lee C-C, Chen J, Wang L-M, Mai W-Y, Min H-Q, Hong M-H, Vande GF, Woude JH (2002) Resau and Bin Tean Met protein expression level correlates with survival in patients with late-stage Nasopharyngeal Carcinoma. Cancer Res. 62(2):589–596

    CAS  Google Scholar 

  56. Lesko E, Majka M (2008) The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci. 13:1271–1280

    Article  CAS  Google Scholar 

  57. Zeng ZS, Weiser MR, Kuntz E (2008) c-Met gene amplification is associated with advanced stage colorectal cancer and liver metastases. Cancer Lett 265:258–269

    Article  CAS  Google Scholar 

  58. Orian-Rousseau V, Chen L, Sleeman JP et al (2002) CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev 16:3074–3086

    Article  CAS  Google Scholar 

  59. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133(4):704–715

    Article  CAS  Google Scholar 

  60. Eterno V, Zambelli A, Pavesi L, Villani L, Zanini V, Petrolo G, Manera S, Tuscano A, Amato A (2014) Adipose-derived Mesenchymal Stem Cells (ASCs) may favour breast cancer recurrence via HGF/c-Met signaling. Oncotarget. 5(3):613–633

    Article  Google Scholar 

  61. Jalili A, Shirvaikar N, Marquez-Curtis LA, Turner AR, Janowska-Wieczorek A (2010) The HGF/c-Met axis synergizes with G-CSF in the mobilization of hematopoietic stem/progenitor cells. Stem Cells Dev. 19(8):1143–1151

    Article  CAS  Google Scholar 

  62. Rø TB, Holien T, Fagerli UM, Hov H, Misund K, Waage A, Sundan A, Holt RU, Børset M (2013) HGF and IGF-1 synergize with SDF-1α in promoting migration of myeloma cells by cooperative activation of p21-activated kinase. Exp Hematol. 41(7):646–655

    Article  CAS  Google Scholar 

  63. (2016) Ziegler adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism. Int J Surg 28:179–184

    Google Scholar 

  64. Duong MN, Geneste A, Fallone F, Li X, Dumontet C, Muller C (2017) The fat and the bad: mature adipocytes, key actors in tumor progression and resistance. Oncotarget. 8(34):57622–57641

    Article  Google Scholar 

  65. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 315(26):1650–1659

    Article  CAS  Google Scholar 

  66. Beilmann M, Vande Woude GF, Dienes HP et al (2000) Hepatocyte growth factor-stimulated invasiveness of monocytes. Blood 95:3964–3969

    Article  CAS  Google Scholar 

  67. Galimi F, Cottone E, Vigna E et al (2001) Hepatocyte growth factor is a regulator of monocyte-macrophage function. J Immunol 166:1241–1247

    Article  CAS  Google Scholar 

  68. Giannoni P, Cutrona G, Totero D (2017) Survival and immunosuppression induced by hepatocyte growth factor in chronic lymphocytic leukemia. Curr Mol Med. 17(1):24–33

    Article  CAS  Google Scholar 

  69. Glodde N, Bald T, van den Boorn-Konijnenberg D, Nakamura K et al (2017) Reactive neutrophil responses dependent on the receptor tyrosine kinase c-MET limit cancer immunotherapy. Immunity 47(4):789–802.e9

    Article  CAS  Google Scholar 

  70. Benkhoucha M, Molnarfi N, Schneiter G, Walker PR, Lalive PH (2013) The neurotrophic hepatocyte growth factor attenuates CD8+ cytotoxic T-lymphocyte activity. J Neuroinflammation 10:154

    Article  CAS  Google Scholar 

  71. Benkhoucha M, Molnarfi N, Kaya G, Belnoue E, Bjarnadóttir K, Dietrich PY, Walker PR, Martinvalet D, Derouazi M, Lalive PH (2017 Sep) Identification of a novel population of highly cytotoxic c-Met-expressing CD8+ T lymphocytes. EMBO Rep. 18(9):1545–1558

    Article  CAS  Google Scholar 

  72. Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ, Morrison SJ (2015) Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527(7577):186–191

    Article  CAS  Google Scholar 

  73. Thiery JP (2002) Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2(6):442–454

    Article  CAS  Google Scholar 

  74. Bertola A, Bonnafous S, Cormont M, Anty R, Tanti JF, Tran A, Le Marchand-Brustel Y, Gual P (2007) Hepatocyte growth factor induces glucose uptake in 3T3-L1 adipocytes through A Gab1/phosphatidylinositol 3-kinase/Glut4 pathway. J Biol Chem. 282(14):10325–10332

    Article  CAS  Google Scholar 

  75. Lyssiotis CA, Kimmelman AC (2017) Metabolic interactions in the tumor microenvironment. Trends Cell Biol 27(11):863–875

    Google Scholar 

  76. Leung E, Cairns RA, Chaudary N, Vellanki RN, Kalliomaki T, Moriyama EH, Mujcic H, Wilson BC, Wouters BG, Hill R, Milosevic M (2017) Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors. BMC Cancer. 17(1):418

    Article  CAS  Google Scholar 

  77. Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3(3):177–185

    Article  CAS  Google Scholar 

  78. Mira A, Morello V, Céspedes MV, Perera T, Comoglio PM, Mangues R, Michieli P (2017) Stroma-derived HGF drives metabolic adaptation of colorectal cancer to angiogenesis inhibitors. Oncotarget. 8(24):38193–38213

    Article  Google Scholar 

  79. Apicella M, Giannoni E, Fiore S, Ferrari KJ, Fernández-Pérez D, Isella C, Granchi C, Minutolo F, Sottile A, Comoglio PM, Medico E, Pietrantonio F, Volante M, Pasini D, Chiarugi P, Giordano S, Corso S (2018) Increased lactate secretion by cancer cells sustains non-cell-autonomous adaptive resistance to MET and EGFR targeted therapies. Cell Metab 28(6):848–865.e6

    Article  CAS  Google Scholar 

  80. O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  CAS  Google Scholar 

  81. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

    Article  CAS  Google Scholar 

  82. Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  Google Scholar 

  83. Wang Z, Ali S, Banerjee S et al (2013) Activated K-Ras and INK4a/Arf deficiency promote aggressiveness of pancreatic cancer by induction of EMT consistent with cancer stem cell phenotype. J Cell Physiol 228:556–562

    Article  CAS  Google Scholar 

  84. Galli R, Binda E, Orfanelli U et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  CAS  Google Scholar 

  85. Yan B, Jiang Z, Cheng L, Chen K, Zhou C, Sun L, Qian W, Li J, Cao J, Xu Q, Ma Q, Lei J (2018) Paracrine HGF/c-MET enhances the stem cell-like potential and glycolysis of pancreatic cancer cells via activation of YAP/HIF-1α. Exp Cell Res. 371(1):63–71

    Article  CAS  Google Scholar 

  86. Vermeulen L, De Sousa E, Melo F, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP (2010) Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 12:468–476

    Article  CAS  Google Scholar 

  87. Previdi S et al (2010) Interaction between human-breast cancer metastasis and bone microenvironment through activated hepatocyte growth factor/Met and β-catenin/Wnt pathways. Eur J Cancer 46:1679–1691

    Article  CAS  Google Scholar 

  88. Lau EY, Lo J, Cheng BY, Ma MK, Lee JM, Ng JK, Chai S, Lin CH, Tsang SY, Ma S, Ng IO, Lee TK (2016) Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular Carcinoma through c-Met/FRA1/HEY1 Signaling. Cell Rep. 15(6):1175–1189

    Article  CAS  Google Scholar 

  89. Abounader R, Laterra J (2005) Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro Oncol 7:436–451

    Article  CAS  Google Scholar 

  90. Pennacchietti S, Michieli P, Galluzzo M et al (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361

    Article  Google Scholar 

  91. Hara S, Nakashiro K, Klosek SK et al (2006) Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncol 42:593–598

    Article  CAS  Google Scholar 

  92. Ponzo MG, Lesurf R, Petkiewicz S et al (2009) Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci U S A 106:12903–12908

    Article  CAS  Google Scholar 

  93. Li Y, Lal B, Kwon S, Fan X, Saldanha U, Reznik TE, Kuchner EB, Eberhart C, Laterra J, Abounader R (2005) The scatter factor/hepatocyte growth factor: c-met pathway in human embryonal central nervous system tumor malignancy. Cancer Res 15;65(20):9355–9362

    Google Scholar 

  94. Xing F, Liu Y, Sharma S, Wu K, Chan MD, Lo HW, Carpenter RL, Metheny-Barlow LJ, Zhou X, Qasem SA, Pasche B, Watabe K (2016) Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer. Cancer Res. 76(17):4970–4980

    Article  CAS  Google Scholar 

  95. Zhang YW, Su Y, Volpert OV et al (2003) Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proc Natl Acad Sci U S A 100:12718–12723

    Article  CAS  Google Scholar 

  96. Michieli P, Mazzone M, Basilico C et al (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6:61–73

    Article  CAS  Google Scholar 

  97. Silvagno F, Follenzi A, Arese M et al (1995) In vivo activation of met tyrosine kinase by heterodimeric hepatocyte growth factor molecule promotes angiogenesis. Arterioscler Thromb Vasc Biol 15:1857–1865

    Article  CAS  Google Scholar 

  98. (2017) Leung Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway. Oncogene 36:2680–2692

    Google Scholar 

  99. Sims DE (1986) The pericyte-a review. Tissue Cell 18(2):153–174

    Article  CAS  Google Scholar 

  100. Ribatti D, Nico B, Crivellato E (2011) The role of pericytes in angiogenesis. Int J Develop Biol 55(3):261–268

    Article  CAS  Google Scholar 

  101. Paiva AE, Lousado L, Guerra DAP et al (2018) Pericytes in the Premetastatic Niche. Cancer Res 78(11):2779–2787

    Article  CAS  Google Scholar 

  102. Cao Y, Zhang ZL, Zhou M et al (2013) Pericyte coverage of differentiated vessels inside tumor vasculature is an independent unfavorable prognostic factor for patients with clear cell renal cell carcinoma. Cancer 119(2):313–334

    Article  CAS  Google Scholar 

  103. Yonenaga Y, Mori A, Onodera H et al (2005) Absence of smooth muscle actin-positive pericyte coverage of tumor vessels correlates with hematogenous metastasis and prognosis of colorectal cancer patients. Oncology 69(2):159–166

    Article  Google Scholar 

  104. O’Keeffe MB, Devlin AH, Burns AJ et al (2008) Investigation of pericytes, hypoxia, and vascularity in bladder tumors: association with clinical outcomes. Oncol Res 17(3):93–101

    Article  Google Scholar 

  105. Xian X, Håkansson J, Ståhlberg A et al (2006) Pericytes limit tumor cell metastasis. J Clin Investig 116(3):642–651

    Article  CAS  Google Scholar 

  106. Birbrair A, Zhang T, Wang ZM et al (2013) Skeletal muscle pericyte subtypes differ in their differentiation potential. Stem Cell Res 10(1):67–84

    Article  CAS  Google Scholar 

  107. Birbrair A, Zhang T, Wang Z et al (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38

    Article  CAS  Google Scholar 

  108. Cooke VG, LeBleu VS, Keskin D et al (2012) Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. Cancer Cell 21(1):66–81

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zambelli, A., Biamonti, G., Amato, A. (2021). HGF/c-Met Signalling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1270. Springer, Cham. https://doi.org/10.1007/978-3-030-47189-7_2

Download citation

Publish with us

Policies and ethics