Skip to main content

Wnt Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Book cover Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1270))

Abstract

Dysregulated Wnt signaling plays a central role in initiation, progression, and metastasis in many types of human cancers. Cancer development and resistance to conventional cancer therapies are highly associated with the tumor microenvironment (TME), which is composed of numerous stable non-cancer cells, including immune cells, extracellular matrix (ECM), fibroblasts, endothelial cells (ECs), and stromal cells. Recently, increasing evidence suggests that the relationship between Wnt signaling and the TME promotes the proliferation and maintenance of tumor cells, including leukemia. Here, we review the Wnt pathway, the role of Wnt signaling in different components of the TME, and therapeutic strategies for targeting Wnt signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169(6):985–999

    Article  CAS  Google Scholar 

  2. Galluzzi L et al (2019) WNT signaling in cancer immunosurveillance. Trends Cell Biol 29(1):44–65

    Article  CAS  Google Scholar 

  3. Goldsberry WN et al (2019) A review of the role of Wnt in cancer immunomodulation. Cancers (Basel) 11(6)

    Google Scholar 

  4. Wu T, Dai Y (2017) Tumor microenvironment and therapeutic response. Cancer Lett 387:61–68

    Article  CAS  Google Scholar 

  5. Kahn M (2014) Can we safely target the WNT pathway? Nat Rev Drug Discov 13(7):513–532

    Article  CAS  Google Scholar 

  6. Duchartre Y, Kim YM, Kahn M (2016) The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol 99:141–149

    Article  Google Scholar 

  7. Alok A et al (2017) Wnt proteins synergize to activate beta-catenin signaling. J Cell Sci 130(9):1532–1544

    CAS  Google Scholar 

  8. Stamos JL, Weis WI (2013) The beta-catenin destruction complex. Cold Spring Harb Perspect Biol 5(1):a007898

    Article  CAS  Google Scholar 

  9. Schulte G (2015) Frizzleds and WNT/beta-catenin signaling–The black box of ligand-receptor selectivity, complex stoichiometry and activation kinetics. Eur J Pharmacol 763(Pt B):191–195

    Article  CAS  Google Scholar 

  10. Janda CY et al (2017) Surrogate Wnt agonists that phenocopy canonical Wnt and beta-catenin signalling. Nature 545(7653):234–237

    Article  CAS  Google Scholar 

  11. Daniels DL, Weis WI (2005) Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 12(4):364–371

    Article  CAS  Google Scholar 

  12. Prasetyanti PR et al (2013) Regulation of stem cell self-renewal and differentiation by Wnt and Notch are conserved throughout the adenoma-carcinoma sequence in the colon. Mol Cancer 12(1):126

    Article  CAS  Google Scholar 

  13. Kim JH et al (2017) Roles of Wnt target genes in the journey of cancer stem cells. Int J Mol Sci 18(8)

    Google Scholar 

  14. De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin Shanghai 43(10):745–756

    Article  CAS  Google Scholar 

  15. Stolz A et al (2015) Wnt-mediated protein stabilization ensures proper mitotic microtubule assembly and chromosome segregation. EMBO Rep 16(4):490–499

    Article  CAS  Google Scholar 

  16. Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13(10):727–738

    Article  CAS  Google Scholar 

  17. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434(7035):843–850

    Article  CAS  Google Scholar 

  18. Chattopadhyay S, Chaklader M, Law S (2019) Aberrant Wnt signaling pathway in the hematopoietic stem/progenitor compartment in experimental leukemic animal. J Cell Commun Signal 13(1):39–52

    Article  Google Scholar 

  19. Staal FJ et al (2016) Aberrant Wnt signaling in leukemia. Cancers (Basel) 8(9)

    Google Scholar 

  20. Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36(11):1461–1473

    Article  CAS  Google Scholar 

  21. Park JI et al (2009) Telomerase modulates Wnt signalling by association with target gene chromatin. Nature 460(7251):66–72

    Article  CAS  Google Scholar 

  22. Vijay GV et al (2019) GSK3beta regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res 21(1):37

    Article  Google Scholar 

  23. Yang J et al (2019) Angiomotin-p130 inhibits beta-catenin stability by competing with Axin for binding to tankyrase in breast cancer. Cell Death Dis 10(3):179

    Article  CAS  Google Scholar 

  24. Domenici G et al (2019) A Sox2-Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells. Oncogene 38(17):3151–3169

    Article  CAS  Google Scholar 

  25. Carmon KS et al (2012) LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/beta-catenin signaling. Mol Cell Biol 32(11):2054–2064

    Article  CAS  Google Scholar 

  26. Schepers AG et al (2012) Lineage tracing reveals Lgr5+ stem cell activity in mouse intestinal adenomas. Science 337(6095):730–735

    Article  CAS  Google Scholar 

  27. Fu T et al (2019) FXR regulates intestinal cancer stem cell proliferation. Cell 176(5):1098–1112. e18

    Article  CAS  Google Scholar 

  28. Wang LQ et al (2018) miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Mol Oncol 12(11):1949–1964

    Article  CAS  Google Scholar 

  29. Cao HZ et al (2017) LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. Cell Death Dis 8(9):e3039

    Article  Google Scholar 

  30. Mei Y et al (2018) RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/beta-catenin signaling. Cell Death Dis 9(10):942

    Article  CAS  Google Scholar 

  31. Gong L et al (2016) Serine-arginine protein kinase 1 promotes a cancer stem cell-like phenotype through activation of Wnt/beta-catenin signalling in NSCLC. J Pathol 240(2):184–196

    Article  CAS  Google Scholar 

  32. Chua HH et al (2015) RBMY, a novel inhibitor of glycogen synthase kinase 3beta, increases tumor stemness and predicts poor prognosis of hepatocellular carcinoma. Hepatology 62(5):1480–1496

    Article  CAS  Google Scholar 

  33. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331(6024):1565–1570

    Article  CAS  Google Scholar 

  34. Thorsson V et al (2018) The immune landscape of cancer. Immunity 48(4):812–830. e14

    Article  CAS  Google Scholar 

  35. Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8(8):581–593

    Article  CAS  Google Scholar 

  36. Zhao DM et al (2010) Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J Immunol 184(3):1191–1199

    Article  CAS  Google Scholar 

  37. Forget MA et al (2012) Stimulation of Wnt/ss-catenin pathway in human CD8+ T lymphocytes from blood and lung tumors leads to a shared young/memory phenotype. PLoS One 7(7):e41074

    Article  CAS  Google Scholar 

  38. Driessens G et al (2011) Beta-catenin inhibits T cell activation by selective interference with linker for activation of T cells-phospholipase C-gamma1 phosphorylation. J Immunol 186(2):784–790

    Article  CAS  Google Scholar 

  39. Ma J et al (2012) beta-catenin/TCF-1 pathway in T cell development and differentiation. J Neuroimmune Pharmacol 7(4):750–762

    Article  Google Scholar 

  40. Jeevan-Raj B et al (2017) The transcription factor Tcf1 contributes to normal NK cell development and function by limiting the expression of granzymes. Cell Rep 20(3):613–626

    Article  CAS  Google Scholar 

  41. Kling JC et al (2018) Temporal regulation of natural killer T cell interferon gamma responses by beta-catenin-dependent and -independent Wnt signaling. Front Immunol 9:483

    Article  CAS  Google Scholar 

  42. Zhou J et al (2009) Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 30(6):845–859

    Article  CAS  Google Scholar 

  43. Fu C et al (2015) beta-Catenin in dendritic cells exerts opposite functions in cross-priming and maintenance of CD8+ T cells through regulation of IL-10. Proc Natl Acad Sci U S A 112(9):2823–2828

    Article  CAS  Google Scholar 

  44. Swafford D, Manicassamy S (2015) Wnt signaling in dendritic cells: its role in regulation of immunity and tolerance. Discov Med 19(105):303–310

    Google Scholar 

  45. Baur AS et al (2013) Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg. Blood 122(13):2185–2194

    Article  CAS  Google Scholar 

  46. Hong Y et al (2016) Deletion of LRP5 and LRP6 in dendritic cells enhances antitumor immunity. Onco Targets Ther 5(4):e1115941

    Google Scholar 

  47. Zhao F et al (2018) Paracrine Wnt5a-beta-catenin signaling triggers a metabolic program that drives dendritic cell tolerization. Immunity 48(1):147–160. e7

    Article  CAS  Google Scholar 

  48. Keerthivasan S et al (2014) beta-Catenin promotes colitis and colon cancer through imprinting of proinflammatory properties in T cells. Sci Transl Med (225):6, 225ra28

    Google Scholar 

  49. Ribas A, Wolchok JD (2018) Cancer immunotherapy using checkpoint blockade. Science 359(6382):1350–1355

    Article  CAS  Google Scholar 

  50. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235

    Article  CAS  Google Scholar 

  51. Taylor A, Rothstein D, Rudd CE (2018) Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Res 78(3):706–717

    Article  CAS  Google Scholar 

  52. Harding JJ et al (2019) Prospective genotyping of hepatocellular carcinoma: clinical implications of next-generation sequencing for matching patients to targeted and immune therapies. Clin Cancer Res 25(7):2116–2126

    Article  CAS  Google Scholar 

  53. Luke JJ et al (2019) WNT/beta-catenin pathway activation correlates with immune exclusion across human cancers. Clin Cancer Res 25(10):3074–3083

    Article  CAS  Google Scholar 

  54. D’Amico L et al (2016) Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer. J Exp Med 213(5):827–840

    Article  CAS  Google Scholar 

  55. Erdogan B, Webb DJ (2017) Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem Soc Trans 45(1):229–236

    Article  CAS  Google Scholar 

  56. Liu J et al (2016) Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-beta pathways. Cancer Lett 379(1):49–59

    Article  CAS  Google Scholar 

  57. Du J et al (2016) Extracellular matrix stiffness dictates Wnt expression through integrin pathway. Sci Rep 6:20395

    Article  CAS  Google Scholar 

  58. Liu S et al (2017) Sirt1 regulates apoptosis and extracellular matrix degradation in resveratrol-treated osteoarthritis chondrocytes via the Wnt/beta-catenin signaling pathways. Exp Ther Med 14(5):5057–5062

    CAS  Google Scholar 

  59. Zhang R et al (2017) E6/E7-P53-POU2F1-CTHRC1 axis promotes cervical cancer metastasis and activates Wnt/PCP pathway. Sci Rep 7:44744

    Article  Google Scholar 

  60. Huang X et al (2018) Wnt7a activates canonical Wnt signaling, promotes bladder cancer cell invasion, and is suppressed by miR-370-3p. J Biol Chem 293(18):6693–6706

    Article  CAS  Google Scholar 

  61. Meng C et al (2018) MRTF-A mediates the activation of COL1A1 expression stimulated by multiple signaling pathways in human breast cancer cells. Biomed Pharmacother 104:718–728

    Article  CAS  Google Scholar 

  62. He H et al (2018) The Wnt-beta-catenin signaling regulated MRTF-A transcription to activate migration-related genes in human breast cancer cells. Oncotarget 9(20):15239–15251

    Article  Google Scholar 

  63. Wang Y et al (2018) Myosin heavy chain 10 (MYH10) gene silencing reduces cell migration and invasion in the glioma cell lines U251, T98G, and SHG44 by inhibiting the Wnt/beta-catenin pathway. Med Sci Monit 24:9110–9119

    Article  CAS  Google Scholar 

  64. Li Y et al (2019) Oncolytic ad co-expressing decorin and Wnt decoy receptor overcomes chemoresistance of desmoplastic tumor through degradation of ECM and inhibition of EMT. Cancer Lett 459:15–29

    Article  CAS  Google Scholar 

  65. Na Y et al (2015) Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model. J Control Release 220(Pt B):766–782

    Article  CAS  Google Scholar 

  66. Hawkins AG et al (2018) The ewing sarcoma secretome and its response to activation of Wnt/beta-catenin signaling. Mol Cell Proteomics 17(5):901–912

    Article  CAS  Google Scholar 

  67. McCarthy JB, El-Ashry D, Turley EA (2018) Hyaluronan, cancer-associated fibroblasts and the tumor microenvironment in malignant progression. Front Cell Dev Biol 6:48

    Article  Google Scholar 

  68. Sasaki S et al (2014) Crucial involvement of the CCL3-CCR5 axis-mediated fibroblast accumulation in colitis-associated carcinogenesis in mice. Int J Cancer 135(6):1297–1306

    Article  CAS  Google Scholar 

  69. Lorsy E et al (2016) Loss of Dickkopf 3 promotes the tumorigenesis of basal breast Cancer. PLoS One 11(7):e0160077

    Article  CAS  Google Scholar 

  70. Caffo M et al (2017) Modulation of Dkk-3 and claudin-5 as new therapeutic strategy in the treatment of meningiomas. Oncotarget 8(40):68280–68290

    Article  Google Scholar 

  71. Ferreira Tojais N et al (2014) Frizzled7 controls vascular permeability through the Wnt-canonical pathway and cross-talk with endothelial cell junction complexes. Cardiovasc Res 103(2):291–303

    Article  CAS  Google Scholar 

  72. Ferrari N et al (2019) Dickkopf-3 links HSF1 and YAP/TAZ signalling to control aggressive behaviours in cancer-associated fibroblasts. Nat Commun 10(1):130

    Article  CAS  Google Scholar 

  73. Hu JL et al (2019) CAFs secreted exosomes promote metastasis and chemotherapy resistance by enhancing cell stemness and epithelial-mesenchymal transition in colorectal cancer. Mol Cancer 18(1):91

    Article  CAS  Google Scholar 

  74. Izumi D et al (2019) TIAM1 promotes chemoresistance and tumor invasiveness in colorectal cancer. Cell Death Dis 10(4):267

    Article  CAS  Google Scholar 

  75. Niell N et al (2018) The human PKP2/plakophilin-2 gene is induced by Wnt/beta-catenin in normal and colon cancer-associated fibroblasts. Int J Cancer 142(4):792–804

    Article  CAS  Google Scholar 

  76. Kramer N et al (2017) Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 36(39):5460–5472

    Article  CAS  Google Scholar 

  77. Yu B et al (2018) Periostin secreted by cancer-associated fibroblasts promotes cancer stemness in head and neck cancer by activating protein tyrosine kinase 7. Cell Death Dis 9(11):1082

    Article  CAS  Google Scholar 

  78. Rohwer N et al (2019) Non-canonical HIF-1 stabilization contributes to intestinal tumorigenesis. Oncogene

    Google Scholar 

  79. Rupp C et al (2015) IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene 34(7):815–825

    Article  CAS  Google Scholar 

  80. Munoz-Galvan S et al (2019) Tumor cell-secreted PLD increases tumor stemness by senescence-mediated communication with microenvironment. Oncogene 38(8):1309–1323

    Article  CAS  Google Scholar 

  81. Horman SR et al (2017) Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets. Oncotarget 8(59):99913–99930

    Article  Google Scholar 

  82. Valenti G et al (2017) Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res 77(8):2134–2147

    Article  CAS  Google Scholar 

  83. Zhao L et al (2017) An integrated analysis identifies STAT4 as a key regulator of ovarian cancer metastasis. Oncogene 36(24):3384–3396

    Article  CAS  Google Scholar 

  84. Avgustinova A et al (2016) Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun 7:10305

    Article  CAS  Google Scholar 

  85. Kaur A et al (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532(7598):250–254

    Article  CAS  Google Scholar 

  86. Chen Y et al (2017) Aberrant low expression of p85alpha in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene 36(33):4692–4705

    Article  CAS  Google Scholar 

  87. Tang S et al (2015) Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and Wnt-beta-catenin signaling pathways. Cell Cycle 14(12):1908–1924

    Article  CAS  Google Scholar 

  88. Piera-Velazquez S, Jimenez SA (2019) Endothelial to mesenchymal transition: role in physiology and in the pathogenesis of human diseases. Physiol Rev 99(2):1281–1324

    Article  CAS  Google Scholar 

  89. Pinto MT et al (2018) Endothelial cells from different anatomical origin have distinct responses during SNAIL/TGF-beta2-mediated endothelial-mesenchymal transition. Am J Transl Res 10(12):4065–4081

    CAS  Google Scholar 

  90. Wang SH et al (2017) Tumour cell-derived WNT5B modulates in vitro lymphangiogenesis via induction of partial endothelial-mesenchymal transition of lymphatic endothelial cells. Oncogene 36(11):1503–1515

    Article  CAS  Google Scholar 

  91. Scholz B et al (2016) Endothelial RSPO3 controls vascular stability and pruning through non-canonical WNT/Ca(2+)/NFAT signaling. Dev Cell 36(1):79–93

    Article  CAS  Google Scholar 

  92. Rapp J et al (2016) Increased Wnt5a in squamous cell lung carcinoma inhibits endothelial cell motility. BMC Cancer 16(1):915

    Article  CAS  Google Scholar 

  93. Shi YN et al (2017) Wnt5a and its signaling pathway in angiogenesis. Clin Chim Acta 471:263–269

    Article  CAS  Google Scholar 

  94. Griveau A et al (2018) A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 33(5):874–889. e7

    Article  CAS  Google Scholar 

  95. Al Thawadi H et al (2016) VE-cadherin cleavage by ovarian cancer microparticles induces beta-catenin phosphorylation in endothelial cells. Oncotarget 7(5):5289–5305

    Article  Google Scholar 

  96. Guo P et al (2018) Ribosomal protein S15a promotes tumor angiogenesis via enhancing Wnt/beta-catenin-induced FGF18 expression in hepatocellular carcinoma. Oncogene 37(9):1220–1236

    Article  CAS  Google Scholar 

  97. Peterson YK et al (2017) Frizzled-5: a high affinity receptor for secreted frizzled-related protein-2 activation of nuclear factor of activated T-cells c3 signaling to promote angiogenesis. Angiogenesis 20(4):615–628

    Article  CAS  Google Scholar 

  98. Huang Z, Feng Y (2017) Exosomes derived from hypoxic colorectal cancer cells promote angiogenesis through Wnt4-induced beta-catenin signaling in endothelial cells. Oncol Res 25(5):651–661

    Article  Google Scholar 

  99. Vallee A, Guillevin R, Vallee JN (2018) Vasculogenesis and angiogenesis initiation under normoxic conditions through Wnt/beta-catenin pathway in gliomas. Rev Neurosci 29(1):71–91

    Article  CAS  Google Scholar 

  100. Linke F et al (2017) Microenvironmental interactions between endothelial and lymphoma cells: a role for the canonical WNT pathway in Hodgkin lymphoma. Leukemia 31(2):361–372

    Article  CAS  Google Scholar 

  101. Yan TL et al (2017) Up-regulation of syncytin-1 contributes to TNF-alpha-enhanced fusion between OSCC and HUVECs partly via Wnt/beta-catenin-dependent pathway. Sci Rep 7:40983

    Article  CAS  Google Scholar 

  102. Bassett EA et al (2016) Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife 5

    Google Scholar 

  103. Planutis K, Planutiene M, Holcombe RF (2014) A novel signaling pathway regulates colon cancer angiogenesis through Norrin. Sci Rep 4:5630

    Article  CAS  Google Scholar 

  104. Yin T, Li L (2006) The stem cell niches in bone. J Clin Invest 116(5):1195–1201

    Article  CAS  Google Scholar 

  105. Huang X et al (2018) The effects of the WNT-signaling modulators BIO and PKF118-310 on the chondrogenic differentiation of human mesenchymal stem cells. Int J Mol Sci 19(2)

    Google Scholar 

  106. Eslaminejad MB, Karimi N, Shahhoseini M (2013) Chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells treated by GSK-3 inhibitors. Histochem Cell Biol 140(6):623–633

    Article  CAS  Google Scholar 

  107. Wu D, Pan W (2010) GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35(3):161–168

    Article  CAS  Google Scholar 

  108. Takiguchi G et al (2016) Wnt5a-Ror2 signaling in mesenchymal stem cells promotes proliferation of gastric cancer cells by activating CXCL16-CXCR6 axis. Cancer Sci 107(3):290–297

    Article  CAS  Google Scholar 

  109. Yang Y et al (2013) Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett 333(1):9–17

    Article  CAS  Google Scholar 

  110. Azevedo PL et al (2019) Canonical WNT signaling pathway is altered in mesenchymal stromal cells from acute myeloid leukemia patients and is implicated in BMP4 Down-regulation. Transl Oncol 12(4):614–625

    Article  Google Scholar 

  111. Shen YL et al (2014) Bone marrow mesenchymal stem cell-derived Wnt5a inhibits leukemia cell progression in vitro via activation of the non-canonical Wnt signaling pathway. Oncol Lett 8(1):85–90

    Article  CAS  Google Scholar 

  112. Wu L et al (2018) Mesenchymal COX2-PG secretome engages NR4A-WNT signalling axis in haematopoietic progenitors to suppress anti-leukaemia immunity. Br J Haematol 183(3):445–456

    Article  CAS  Google Scholar 

  113. Kim YM, Gang EJ, Kahn M (2017) CBP/catenin antagonists: targeting LSCs’ achilles heel. Exp Hematol 52:1–11

    Article  CAS  Google Scholar 

  114. Zimmerli D et al (2018) WNT ligands control initiation and progression of human papillomavirus-driven squamous cell carcinoma. Oncogene 37(27):3753–3762

    Article  CAS  Google Scholar 

  115. Picco G et al (2017) Loss of AXIN1 drives acquired resistance to WNT pathway blockade in colorectal cancer cells carrying RSPO3 fusions. EMBO Mol Med 9(3):293–303

    Article  CAS  Google Scholar 

  116. Ma F et al (2016) SOX9 drives WNT pathway activation in prostate cancer. J Clin Invest 126(5):1745–1758

    Article  Google Scholar 

  117. Agarwal P et al (2017) Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI. Blood 129(8):1008–1020

    Article  CAS  Google Scholar 

  118. Guimaraes PPG et al (2018) Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release 290:75–87

    Article  CAS  Google Scholar 

  119. Park SY et al (2019) Inhibition of LEF1-mediated DCLK1 by niclosamide attenuates colorectal cancer stemness. Clin Cancer Res 25(4):1415–1429

    Article  CAS  Google Scholar 

  120. Bhattacharyya J et al (2017) Niclosamide-conjugated polypeptide nanoparticles inhibit Wnt signaling and colon cancer growth. Nanoscale 9(34):12709–12717

    Article  CAS  Google Scholar 

  121. Chen X et al (2019) Down-regulation of microRNA-31-5p inhibits proliferation and invasion of osteosarcoma cells through Wnt/beta-catenin signaling pathway by enhancing AXIN1. Exp Mol Pathol 108:32–41

    Article  CAS  Google Scholar 

  122. Kagey MH, He X (2017) Rationale for targeting the Wnt signalling modulator Dickkopf-1 for oncology. Br J Pharmacol 174(24):4637–4650

    Article  CAS  Google Scholar 

  123. Kimura H et al (2019) CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin Cancer Res 25(6):1936–1947

    Article  CAS  Google Scholar 

  124. Mu J et al (2017) Dickkopf-related protein 2 induces G0/G1 arrest and apoptosis through suppressing Wnt/beta-catenin signaling and is frequently methylated in breast cancer. Oncotarget 8(24):39443–39459

    Article  Google Scholar 

  125. Moore KN et al (2019) A phase 1b dose escalation study of ipafricept (OMP54F28) in combination with paclitaxel and carboplatin in patients with recurrent platinum-sensitive ovarian cancer. Gynecol Oncol

    Google Scholar 

  126. Chen Y et al (2019) TNF-alpha derived from M2 tumor-associated macrophages promotes epithelial-mesenchymal transition and cancer stemness through the Wnt/beta-catenin pathway in SMMC-7721 hepatocellular carcinoma cells. Exp Cell Res 378(1):41–50

    Article  CAS  Google Scholar 

  127. Arensman MD et al (2014) The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther 13(10):2303–2314

    Article  CAS  Google Scholar 

  128. Gang EJ et al (2014) Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene 33(17):2169–2178

    Article  CAS  Google Scholar 

  129. Kim YM et al (2011) The gamma catenin/CBP complex maintains survivin transcription in beta-catenin deficient/depleted cancer cells. Curr Cancer Drug Targets 11(2):213–225

    Article  CAS  Google Scholar 

  130. Jiang X et al (2018) Disruption of Wnt/beta-catenin exerts antileukemia activity and synergizes with FLT3 inhibition in FLT3-mutant acute myeloid leukemia. Clin Cancer Res 24(10):2417–2429

    Article  CAS  Google Scholar 

  131. Holtzhausen A et al (2015) Melanoma-derived Wnt5a promotes local dendritic-cell expression of IDO and immunotolerance: opportunities for pharmacologic enhancement of immunotherapy. Cancer Immunol Res 3(9):1082–1095

    Article  CAS  Google Scholar 

  132. Prasad CP et al (2018) WNT5A as a therapeutic target in breast cancer. Cancer Metastasis Rev 37(4):767–778

    Article  CAS  Google Scholar 

  133. Canesin G et al (2017) Treatment with the WNT5A-mimicking peptide Foxy-5 effectively reduces the metastatic spread of WNT5A-low prostate cancer cells in an orthotopic mouse model. PLoS One 12(9):e0184418

    Article  CAS  Google Scholar 

  134. Osman J et al (2019) The WNT5A agonist Foxy5 reduces the number of colonic cancer stem cells in a xenograft mouse model of human colonic cancer. Anticancer Res 39(4):1719–1728

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Mi Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ruan, Y., Ogana, H., Gang, E., Kim, H.N., Kim, YM. (2021). Wnt Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1270. Springer, Cham. https://doi.org/10.1007/978-3-030-47189-7_7

Download citation

Publish with us

Policies and ethics