Skip to main content

Lysophospholipid Signalling and the Tumour Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1270))

Abstract

Homeostasis is the key to survival. This is as true for the tumour cell as it is for the normal host cell. Tumour cells and normal host cells constantly interact with each other, and the balance of these interactions results in the prevailing homeostatic conditions. The interactions between the milieu of signalling molecules and their effects on the host and tumour cells are known as the tumour microenvironment. The predominant balance of effects within the tumour microenvironment will determine if the tumour cells can evade the host’s responses to survive and grow or if the tumour cells will be eradicated. Lysophospholipids (LPLs) are a group of lipid signalling molecules which exert their effects via autocrinic and paracrinic mechanisms. Therefore, LPLs are being explored to determine if they are potentially key signalling molecules within the tumour microenvironment. The effects of LPLs within the tumour microenvironment include modulating cell proliferation, cell survival, cell motility, angiogenesis and the immune system. These are all important activities that affect the balance of host-tumour cell interactions. This chapter expands on these functions and also the role that LPLs could play as a potential treatment target in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

4PBPA:

4-Pentadecylbenzylphosphonic acid

ATX:

Autotaxin

COX-2:

Cyclooxygenase 2

CRP:

C-reactive protein

ECM:

Extracellular matrix

Edg:

Endothelial differentiation gene

EGF:

Epidermal growth factor

EGFR:

EGF receptor

G2A:

G2 accumulation

GBM:

Glioblastoma

GPCR:

G-protein-coupled receptor

hESC:

Human embryonic stem cell

HIF1α:

Hypoxia-inducible factor 1 alpha

HRE:

Hypoxia-responsive elements

IL:

Interleukin

LPA:

Lysophosphatidic acid

LPAR:

LPA receptor

LPC:

Lysophosphatidylcholine

LPL:

Lysophospholipids

LT:

Leukotriene

MAPK:

Mitogen-activated protein kinase

MEK:

MAPK/ERK kinase

MHC:

Major histocompatibility complex

MMP:

Matrix metalloprotease

MT1:

Membrane type 1

mTOR:

Mammalian target of rapamycin

NHERF2:

Sodium-hydrogen exchange regulatory factor 2

OGR1:

Ovarian cancer G-protein-coupled receptor

OS:

Overall survival

PAF:

Platelet-activating factor

PDGF:

Platelet-derived growth factor

PFS:

Progression-free survival

PG:

Prostaglandin

PI3K:

Phosphoinositol-3-kinase

S1P:

Sphingosine 1-phosphate

S1PR:

S1P receptor

SCC:

Squamous cell carcinoma

SPC:

Sphingosylphosphorylcholine

SphK:

Sphingosine kinase

SPNS2:

S1P transporter spinster homologue 2

TDAG8:

T-cell death-associated gene 8

TRIP6:

Thyroid receptor-interacting protein 6

VEGF:

Vascular endothelial growth factor

VEGFR:

VEGF receptor

YAP:

Yes-associated protein

References

  1. Leibold AT, Monaco GN, Dey M (2019) The role of the immune system in brain metastasis. Curr Neurobiol 10:33–48

    Google Scholar 

  2. Wu A, Wei J, Kong L-Y, Wang Y, Priebe W, Qiao W, Sawaya R, Heimberger AB (2010) Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology 12:1113–1125. https://doi.org/10.1158/1078-0432.CCR-10-0279

    Article  CAS  Google Scholar 

  3. van der Weyden L, Arends MJ, Campbell AD, Bald T, Wardle-Jones H, Griggs N, Velasco-Herrera MDC, TĂ¼ting T, Sansom OJ, Karp NA, Clare S, Gleeson D, Ryder E, Galli A, Tuck E, Cambridge EL, Voet T, Macaulay IC, Wong K, Sanger Mouse Genetics Project, Spiegel S, Speak AO, Adams DJ (2017) Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature 541:233–236. https://doi.org/10.1038/nature20792

    Article  CAS  Google Scholar 

  4. Tomaszewski W, Sanchez-Perez L, Gajewski TF, Sampson JH (2019) Brain tumor microenvironment and host state: implications for immunotherapy. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-18-1627

  5. Sayegh ET, Kaur G, Bloch O, Parsa AT (2013) Systematic review of protein biomarkers of invasive behavior in glioblastoma. Mol Neurobiol 49:1212–1244. https://doi.org/10.1007/s11060-004-2751-6

    Article  Google Scholar 

  6. Scupoli MT, Sartoris S, Tosi G, Ennas MG, Nicolis M, Cestari T, Zamboni G, Martignoni G, Lemoine NR, Scarpa A, Accolla RS (1996) Expression of MHC class I and class II antigens in pancreatic adenocarcinomas. Tissue Antigens 48:301–311

    Article  CAS  Google Scholar 

  7. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Cioce V, Schiffmann E, Liotta LA (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267:2524–2529

    CAS  Google Scholar 

  8. Stracke ML, Clair T, Liotta LA (1997) Autotaxin, tumor motility-stimulating exophosphodiesterase. Adv Enzym Regul 37:135–144

    Article  CAS  Google Scholar 

  9. Ishii I, Fukushima N, Ye X, Chun J (2004) Lysophospholipid receptors: signaling and biology. Annu Rev Biochem 73:321–354. https://doi.org/10.1146/annurev.biochem.73.011303.073731

    Article  CAS  Google Scholar 

  10. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, Takio K, Yamori T, Mills GB, Inoue K, Aoki J, Arai H (2002) Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158:227–233. https://doi.org/10.1083/jcb.200204026

    Article  CAS  Google Scholar 

  11. Moolenaar WH (2002) Lysophospholipids in the limelight: autotaxin takes center stage. J Cell Biol 158:197–199. https://doi.org/10.1083/jcb.200206094

    Article  CAS  Google Scholar 

  12. Perrakis A, Moolenaar WH (2014) Autotaxin: structure-function and signaling. J Lipid Res 55:1010–1018. https://doi.org/10.1194/jlr.R046391

    Article  CAS  Google Scholar 

  13. Ng W, Pébay A, Drummond K, Burgess A, Kaye AH, Morokoff A (2014) Complexities of lysophospholipid signalling in glioblastoma. J Clin Neurosci 21:893–898. https://doi.org/10.1016/j.jocn.2014.02.013

    Article  Google Scholar 

  14. Tokumura A, Majima E, Kariya Y, Tominaga K, Kogure K, Yasuda K, Fukuzawa K (2002) Identification of human plasma Lysophospholipase D, a lysophosphatidic acid-producing enzyme, as Autotaxin, a multifunctional phosphodiesterase. J Biol Chem 277:39436–39442. https://doi.org/10.1161/hh1501.094265

    Article  CAS  Google Scholar 

  15. Choi JW, Lee C-W, Chun J (2008) Biological roles of lysophospholipid receptors revealed by genetic null mice: an update. Biochim Biophys Acta 1781:531–539. https://doi.org/10.1016/j.bbalip.2008.03.004

    Article  CAS  Google Scholar 

  16. Meyer zu Heringdorf D, Jakobs KH (2007) Lysophospholipid receptors: signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta Biomembr 1768:923–940. https://doi.org/10.1016/j.bbamem.2006.09.026

    Article  CAS  Google Scholar 

  17. van Meeteren LA, Ruurs P, Christodoulou E, Goding JW, Takakusa H, Kikuchi K, Perrakis A, Nagano T, Moolenaar WH (2005) Inhibition of Autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 280:21155–21161. https://doi.org/10.1006/bbrc.1997.6982

    Article  Google Scholar 

  18. Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH (2010) International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 62:579–587. https://doi.org/10.1124/pr.110.003111

    Article  CAS  Google Scholar 

  19. Yanagida K, Ishii S (2011) Non-Edg family LPA receptors: the cutting edge of LPA research. J Biochem 150:223–232. https://doi.org/10.1186/1465-9921-10-114

    Article  CAS  Google Scholar 

  20. Anliker B, Chun J (2004) Lysophospholipid G protein-coupled receptors. J Biol Chem 279:20555–20558. https://doi.org/10.1006/gyno.2002.6692

    Article  CAS  Google Scholar 

  21. Chan LC, Peters W, Xu Y, Chun J, Farese RV, Cases S (2007) LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA). J Leukoc Biol 82:1193–1200. https://doi.org/10.1189/jlb.0407221

    Article  CAS  Google Scholar 

  22. Lin C-I, Chen C-N, Lin P-W, Chang K-J, Hsieh F-J, Lee H (2007) Lysophosphatidic acid regulates inflammation-related genes in human endothelial cells through LPA1 and LPA3. Biochem Biophys Res Commun 363:1001–1008. https://doi.org/10.1016/j.bbrc.2007.09.081

    Article  CAS  Google Scholar 

  23. Goldshmit Y, Munro K, Leong SY, Pébay A, Turnley AM (2010) LPA receptor expression in the central nervous system in health and following injury. Cell Tissue Res 341:23–32. https://doi.org/10.1007/s00441-010-0977-5

    Article  CAS  Google Scholar 

  24. Nakajima M, Nagahashi M, Rashid OM, Takabe K, Wakai T (2017) The role of sphingosine-1-phosphate in the tumor microenvironment and its clinical implications. Tumor Biol 39:1010428317699133. https://doi.org/10.1177/1010428317699133

    Article  CAS  Google Scholar 

  25. Yamada A, Nagahashi M, Aoyagi T, Huang W-C, Lima S, Hait NC, Maiti A, Kida K, Terracina KP, Miyazaki H, Ishikawa T, Endo I, Waters MR, Qi Q, Yan L, Milstien S, Spiegel S, Takabe K (2018) ABCC1-exported sphingosine-1-phosphate, produced by sphingosine kinase 1, shortens survival of mice and patients with breast cancer. Mol Cancer Res 16:1059–1070. https://doi.org/10.1158/1541-7786.MCR-17-0353

    Article  CAS  Google Scholar 

  26. Gräler MH, Goetzl EJ (2002) Lysophospholipids and their G protein-coupled receptors in inflammation and immunity. Biochim Biophys Acta 1582:168–174. https://doi.org/10.1016/s1388-1981(02)00152-x

    Article  Google Scholar 

  27. Panetti TS (2002) Differential effects of sphingosine 1-phosphate and lysophosphatidic acid on endothelial cells. Biochim Biophys Acta 1582:190–196. https://doi.org/10.1016/s1388-1981(02)00155-5

    Article  CAS  Google Scholar 

  28. English D, Brindley DN, Spiegel S, Garcia JGN (2002) Lipid mediators of angiogenesis and the signalling pathways they initiate. Biochim Biophys Acta 1582:228–239. https://doi.org/10.1016/s1388-1981(02)00176-2

    Article  CAS  Google Scholar 

  29. Huang M-C, Lee H-Y, Yeh C-C, Kong Y, Zaloudek CJ, Goetzl EJ (2004) Induction of protein growth factor systems in the ovaries of transgenic mice overexpressing human type 2 lysophosphatidic acid G protein-coupled receptor (LPA2). Oncogene 23:122–129. https://doi.org/10.1038/sj.onc.1206986

    Article  CAS  Google Scholar 

  30. Fujita T, Miyamoto S, Onoyama I, Sonoda K, Mekada E, Nakano H (2003) Expression of lysophosphatidic acid receptors and vascular endothelial growth factor mediating lysophosphatidic acid in the development of human ovarian cancer. Cancer Lett 192:161–169. https://doi.org/10.1016/S0304-3835(02)00713-9

    Article  CAS  Google Scholar 

  31. Fang X, Gaudette D, Furui T, Mao M, Estrella V, Eder A, Pustilnik T, Sasagawa T, LaPushin R, Yu S, Jaffe RB, Wiener JR, Erickson JR, Mills GB (2000) Lysophospholipid growth factors in the initiation, progression, metastases, and management of ovarian cancer. Ann N Y Acad Sci 905:188–208

    Article  CAS  Google Scholar 

  32. Cai H, Xu Y (2013) The role of LPA and YAP signaling in long-term migration of human ovarian cancer cells. Cell Commun Signal 11:31. https://doi.org/10.2353/ajpath.2009.090028

    Article  CAS  Google Scholar 

  33. Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, Kitayama J, Yamori T, Aoki J, Fujimaki T, Arai H (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 281:17492–17500. https://doi.org/10.1074/jbc.M601803200

    Article  CAS  Google Scholar 

  34. Leve F, Peres-Moreira RJ, Binato R, Abdelhay E, Morgado-DĂ­az JA (2015) LPA induces Colon Cancer cell proliferation through a cooperation between the ROCK and STAT-3 pathways. PLoS One 10:e0139094. https://doi.org/10.1371/journal.pone.0139094.s008

    Article  Google Scholar 

  35. Liao Y, Mu G, Zhang L, Zhou W, Zhang J, Yu H (2013) Lysophosphatidic acid stimulates activation of focal adhesion kinase and Paxillin and promotes cell motility, via LPA1–3, in human pancreatic cancer. Dig Dis Sci 58:3524–3533. https://doi.org/10.1002/(SICI)1097-4652(200005)183:2<208::AID-JCP7>3.0.CO;2-5

    Article  CAS  Google Scholar 

  36. Annabi B, Lachambre M-P, Plouffe K, Sartelet H, Béliveau R (2009) Modulation of invasive properties of CD133+ glioblastoma stem cells: a role for MT1-MMP in bioactive lysophospholipid signaling. Mol Carcinog 48:910–919. https://doi.org/10.1002/mc.20541

    Article  CAS  Google Scholar 

  37. Willier S, Butt E, Grunewald TGP (2013) Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: a focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol Cell 105:317–333. https://doi.org/10.1016/j.ygyno.2010.07.008

    Article  CAS  Google Scholar 

  38. Matayoshi S, Chiba S, Lin Y, Arakaki K, Matsumoto H, Nakanishi T, Suzuki M, Kato S (2013) Lysophosphatidic acid receptor 4 signaling potentially modulates malignant behavior in human head and neck squamous cell carcinoma cells. Int J Oncol 42:1560–1568. https://doi.org/10.3892/ijo.2013.1849

    Article  CAS  Google Scholar 

  39. Gschwind A, Prenzel N, Ullrich A (2002) Lysophosphatidic acid-induced squamous cell carcinoma cell proliferation and motility involves epidermal growth factor receptor signal transactivation. Cancer Res 62:6329–6336

    CAS  Google Scholar 

  40. Kapitonov D, Allegood JC, Mitchell C, Hait NC, Almenara JA, Adams JK, Zipkin RE, Dent P, Kordula T, Milstien S, Spiegel S (2009) Targeting sphingosine kinase 1 inhibits Akt signaling, induces apoptosis, and suppresses growth of human glioblastoma cells and xenografts. Cancer Res 69:6915–6923. https://doi.org/10.1158/0008-5472.CAN-09-0664

    Article  CAS  Google Scholar 

  41. Hong G, Baudhuin LM, Xu Y (1999) Sphingosine-1-phosphate modulates growth and adhesion of ovarian cancer cells. FEBS Lett 460:513–518

    Article  CAS  Google Scholar 

  42. Nagahashi M, Tsuchida J, Moro K, Hasegawa M, Tatsuda K, Woelfel IA, Takabe K, Wakai T (2016) High levels of sphingolipids in human breast cancer. J Surg Res 204:435–444. https://doi.org/10.1016/j.jss.2016.05.022

    Article  CAS  Google Scholar 

  43. Baenke F, Peck B, Miess H, Schulze A (2013) Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 6:1353–1363. https://doi.org/10.1242/dmm.011338

    Article  CAS  Google Scholar 

  44. Derfuss T, Ontaneda D, Nicholas J, Meng X, Hawker K (2016) Relapse rates in patients with multiple sclerosis treated with fingolimod: subgroup analyses of pooled data from three phase 3 trials. Mult Scler Relat Disord 8:124–130. https://doi.org/10.1016/j.msard.2016.05.015

    Article  Google Scholar 

  45. Kappos L, O’Connor P, Radue E-W, Polman C, Hohlfeld R, Selmaj K, Ritter S, Schlosshauer R, von Rosenstiel P, Zhang-Auberson L, Francis G (2015) Long-term effects of fingolimod in multiple sclerosis: the randomized FREEDOMS extension trial. Neurology 84:1582–1591. https://doi.org/10.1212/WNL.0000000000001462

    Article  CAS  Google Scholar 

  46. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888. https://doi.org/10.1038/47260

    Article  CAS  Google Scholar 

  47. Daub H, Weiss FU, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379:557–560. https://doi.org/10.1038/379557a0

    Article  CAS  Google Scholar 

  48. Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16:7032–7044. https://doi.org/10.1093/emboj/16.23.7032

    Article  CAS  Google Scholar 

  49. Keller JN, Steiner MR, Holtsberg FW, Mattson MP, Steiner SM (1997) Lysophosphatidic acid-induced proliferation-related signals in astrocytes. J Neurochem 69:1073–1084

    Article  CAS  Google Scholar 

  50. Korkina O, Dong Z, Marullo A, Warshaw G, Symons M, Ruggieri R (2013) The MLK-related kinase (MRK) is a novel RhoC effector that mediates lysophosphatidic acid (LPA)-stimulated tumor cell invasion. J Biol Chem 288:5364–5373. https://doi.org/10.1074/jbc.M112.414060

    Article  CAS  Google Scholar 

  51. Leve F, Marcondes TGC, Bastos LGR, Rabello SV, Tanaka MN, Morgado-Díaz JA (2011) Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol 671:7–17. https://doi.org/10.1016/j.ejphar.2011.09.006

    Article  CAS  Google Scholar 

  52. Xu X, Yang G, Zhang H, Prestwich GD (2009) Evaluating dual activity LPA receptor pan-antagonist/autotaxin inhibitors as anti-cancer agents in vivo using engineered human tumors. Prostaglandins Other Lipid Mediat 89:140–146. https://doi.org/10.1016/j.prostaglandins.2009.07.006

    Article  CAS  Google Scholar 

  53. Sengupta S, Kim KS, Berk MP, Oates R, Escobar P, Belinson J, Li W, Lindner DJ, Williams B, Xu Y (2007) Lysophosphatidic acid downregulates tissue inhibitor of metalloproteinases, which are negatively involved in lysophosphatidic acid-induced cell invasion. Oncogene 26:2894–2901. https://doi.org/10.1038/sj.onc.1210093

    Article  CAS  Google Scholar 

  54. Shah BH, Neithardt A, Chu DB, Shah FB, Catt KJ (2006) Role of EGF receptor transactivation in phosphoinositide 3-kinase-dependent activation of MAP kinase by GPCRs. J Cell Physiol 206:47–57. https://doi.org/10.1002/jcp.20423

    Article  CAS  Google Scholar 

  55. Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD, Huang S (2006) The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25:2234–2244. https://doi.org/10.1038/sj.onc.1209261

    Article  CAS  Google Scholar 

  56. Manning TJ, Parker JC, Sontheimer H (2000) Role of lysophosphatidic acid and rho in glioma cell motility. Cell Motil Cytoskeleton 45:185–199. https://doi.org/10.1002/(SICI)1097-0169(200003)45:3<185::AID-CM2>3.0.CO;2-G

    Article  CAS  Google Scholar 

  57. Lopez-Ilasaca M, Crespo P, Pellici PG, Gutkind JS, Wetzker R (1997) Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI 3-kinase gamma. Science 275:394–397

    Article  CAS  Google Scholar 

  58. Radeff-Huang J, Seasholtz TM, Matteo RG, Brown JH (2004) G protein mediated signaling pathways in lysophospholipid induced cell proliferation and survival. J Cell Biochem 92:949–966. https://doi.org/10.1002/jcb.20094

    Article  CAS  Google Scholar 

  59. Fang X, Yu S, LaPushin R, Lu Y, Furui T, Penn LZ, Stokoe D, Erickson JR, Bast RC, Mills GB (2000) Lysophosphatidic acid prevents apoptosis in fibroblasts via G(i)-protein-mediated activation of mitogen-activated protein kinase. Biochem J 352(Pt 1):135–143

    Article  CAS  Google Scholar 

  60. Fang X, Schummer M, Mao M, Yu S, Tabassam FH, Swaby R, Hasegawa Y, Tanyi JL, LaPushin R, Eder A, Jaffe R, Erickson J, Mills GB (2002) Lysophosphatidic acid is a bioactive mediator in ovarian cancer. Biochim Biophys Acta 1582:257–264. https://doi.org/10.1016/s1388-1981(02)00179-8

    Article  CAS  Google Scholar 

  61. Wong RCB, Tellis I, Jamshidi P, Pera M, Pébay A (2007) Anti-apoptotic effect of Sphingosine-1-phosphate and platelet-derived growth factor in human embryonic stem cells. Stem Cells Dev 16:989–1002. https://doi.org/10.1089/scd.2007.0057

    Article  CAS  Google Scholar 

  62. E S, Lai Y-J, Tsukahara R, Chen C-S, Fujiwara Y, Yue J, Yu J-H, Guo H, Kihara A, Tigyi G, Lin F-T (2009) Lysophosphatidic acid 2 receptor-mediated supramolecular complex formation regulates its antiapoptotic effect. J Biol Chem 284:14558–14571. https://doi.org/10.1074/jbc.M900185200

    Article  CAS  Google Scholar 

  63. Furui T, LaPushin R, Mao M, Khan H, Watt SR, Watt MA, Lu Y, Fang X, Tsutsui S, Siddik ZH, Bast RC, Mills GB (1999) Overexpression of edg-2/vzg-1 induces apoptosis and anoikis in ovarian cancer cells in a lysophosphatidic acid-independent manner. Clin Cancer Res 5:4308–4318

    CAS  Google Scholar 

  64. Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513. https://doi.org/10.1016/j.ccr.2009.03.018

    Article  CAS  Google Scholar 

  65. Lee J, Park SY, Lee EK, Park CG, Chung HC, Rha SY, Kim YK, Bae GU, Kim BK, Han JW, Lee HY (2006) Activation of hypoxia-inducible factor-1alpha is necessary for lysophosphatidic acid-induced vascular endothelial growth factor expression. Clin Cancer Res 12:6351–6358. https://doi.org/10.1158/1078-0432.CCR-06-1252

    Article  CAS  Google Scholar 

  66. Wu P-Y, Lin Y-C, Lan S-Y, Huang Y-L, Lee H (2013) Aromatic hydrocarbon receptor inhibits lysophosphatidic acid-induced vascular endothelial growth factor-a expression in PC-3 prostate cancer cells. Biochem Biophys Res Commun 437:440–445. https://doi.org/10.1016/j.bbrc.2013.06.098

    Article  CAS  Google Scholar 

  67. Tsukahara T, Tsukahara R, Fujiwara Y, Yue J, Cheng Y, Guo H, Bolen A, Zhang C, Balazs L, Re F, Du G, Frohman MA, Baker DL, Parrill AL, Uchiyama A, Kobayashi T, Murakami-Murofushi K, Tigyi G (2010) Phospholipase D2-dependent inhibition of the nuclear hormone receptor PPARgamma by cyclic phosphatidic acid. Mol Cell 39:421–432. https://doi.org/10.1016/j.molcel.2010.07.022

    Article  CAS  Google Scholar 

  68. Shano S, Moriyama R, Chun J, Fukushima N (2008) Lysophosphatidic acid stimulates astrocyte proliferation through LPA1. Neurochem Int 52:216–220. https://doi.org/10.1016/j.neuint.2007.07.004

    Article  CAS  Google Scholar 

  69. Matas-Rico E, GarcĂ­a-Diaz B, Llebrez-Zayas P, LĂ³pez-Barroso D, SantĂ­n L, Pedraza C, Smith-FernĂ¡ndez A, FernĂ¡ndez-Llebrez P, Tellez T, Redondo M, Chun J, De Fonseca FR, Estivill-TorrĂºs G (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol Cell Neurosci 39:342–355. https://doi.org/10.1016/j.mcn.2008.07.014

    Article  CAS  Google Scholar 

  70. Sorensen SD, Nicole O, Peavy RD, Montoya LM, Lee CJ, Murphy TJ, Traynelis SF, Hepler JR (2003) Common signaling pathways link activation of murine PAR-1, LPA, and S1P receptors to proliferation of astrocytes. Mol Pharmacol 64:1199–1209. https://doi.org/10.1124/mol.64.5.1199

    Article  CAS  Google Scholar 

  71. Tabuchi S, Kume K, Aihara M, Shimizu T (2000) Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genes. Neurochem Res 25:573–582

    Article  CAS  Google Scholar 

  72. Weiner JA, Hecht JH, Chun J (1998) Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398:587–598

    Article  CAS  Google Scholar 

  73. (2008) Lysophosphatidic acid receptor-dependent secondary effects via astrocytes promote neuronal differentiation. 283:7470–7479. https://doi.org/10.1074/jbc.M707758200

  74. Cui H-L, Qiao J-T (2007) Effect of lysophosphatidic acid on differentiation of embryonic neural stem cells into neuroglial cells in rats in vitro. Sheng Li Xue Bao 59:759–764

    CAS  Google Scholar 

  75. Fukushima N, Shano S, Moriyama R, Chun J (2007) Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1–Gi/o pathway. Neurochem Int 50:302–307. https://doi.org/10.1016/j.neuint.2006.09.008

    Article  CAS  Google Scholar 

  76. Dottori M, Leung J, Turnley AM, Pébay A (2008) Lysophosphatidic acid inhibits neuronal differentiation of neural stem/progenitor cells derived from human embryonic stem cells. Stem Cells 26:1146–1154. https://doi.org/10.1634/stemcells.2007-1118

    Article  CAS  Google Scholar 

  77. Birgbauer E, Chun J (2006) New developments in the biological functions of lysophospholipids. Cell Mol Life Sci 63:2695–2701. https://doi.org/10.1007/s00018-006-6155-y

    Article  CAS  Google Scholar 

  78. Bektas M, Barak LS, Jolly PS, Liu H, Lynch KR, Lacana E, Suhr K-B, Milstien S, Spiegel S (2003) The G protein-coupled receptor GPR4 suppresses ERK activation in a ligand-independent manner. Biochemistry 42:12181–12191. https://doi.org/10.1021/bi035051y

    Article  CAS  Google Scholar 

  79. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109. https://doi.org/10.1097/01.jnen.0000182981.02355.10

    Article  Google Scholar 

  80. Louis DN, Perry A, Reifenberger G, Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  81. Savaskan NE, Rocha L, Kotter MR, Baer A, Lubec G, van Meeteren LA, Kishi Y, Aoki J, Moolenaar WH, Nitsch R, Bräuer AU (2006) Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cell Mol Life Sci 64:230–243. https://doi.org/10.1007/s00018-006-6412-0

    Article  CAS  Google Scholar 

  82. Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez-Buylla A (2015) Embryonic origin of postnatal neural stem cells. Cell 161:1644–1655. https://doi.org/10.1016/j.cell.2015.05.041

    Article  CAS  Google Scholar 

  83. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184. https://doi.org/10.1146/annurev.neuro.051508.135600

    Article  CAS  Google Scholar 

  84. Doetsch F (2003) The glial identity of neural stem cells. Nat Neurosci 6:1127–1134. https://doi.org/10.1038/nn1144

    Article  CAS  Google Scholar 

  85. Doetsch F, Caillé I, Lim DA, García-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    Article  CAS  Google Scholar 

  86. Taupin P, Gage FH (2002) Adult neurogenesis and neural stem cells of the central nervous system in mammals. J Neurosci Res 69:745–749. https://doi.org/10.1006/exnr.2001.7798

    Article  CAS  Google Scholar 

  87. Alves TR, Lima FRS, Kahn SA, Lobo D, Dubois LGF, Soletti R, Borges H, Neto VM (2011) Glioblastoma cells: a heterogeneous and fatal tumor interacting with the parenchyma. Life Sci 89:532–539. https://doi.org/10.1016/j.lfs.2011.04.022

    Article  CAS  Google Scholar 

  88. Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H (2011) The brain tumor microenvironment. Glia 59:1169–1180. https://doi.org/10.1002/glia.21136

    Article  Google Scholar 

  89. Schneider SW, Ludwig T, Tatenhorst L, Braune S, Oberleithner H, Senner V, Paulus W (2004) Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol 107:272–276. https://doi.org/10.1007/s00401-003-0810-2

    Article  Google Scholar 

  90. Rascher G, Fischmann A, Kröger S, Duffner F, Grote E-H, Wolburg H (2002) Extracellular matrix and the blood-brain barrier in glioblastoma multiforme: spatial segregation of tenascin and agrin. Acta Neuropathol 104:85–91. https://doi.org/10.1007/s00401-002-0524-x

    Article  CAS  Google Scholar 

  91. Coomber BL, Stewart PA, Hayakawa K, Farrell CL, Del Maestro RF (1987) Quantitative morphology of human glioblastoma multiforme microvessels: structural basis of blood-brain barrier defect. J Neuro-Oncol 5:299–307

    Article  CAS  Google Scholar 

  92. Lee Z, Cheng C-T, Zhang H, Subler MA, Wu J, Mukherjee A, Windle JJ, Chen C-K, Fang X (2008) Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. MBoC 19:5435–5445. https://doi.org/10.1091/mbc.e08-03-0316

    Article  CAS  Google Scholar 

  93. Jongsma M, Matas-Rico E, Rzadkowski A, Jalink K, Moolenaar WH (2011) LPA is a Chemorepellent for B16 melanoma cells: action through the cAMP-elevating LPA5 receptor. PLoS One 6:e29260. https://doi.org/10.1371/journal.pone.0029260.s006

    Article  CAS  Google Scholar 

  94. Ariztia EV, Lee CJ, Gogoi R, Fishman DA (2006) The tumor microenvironment: key to early detection. Crit Rev Clin Lab Sci 43:393–425. https://doi.org/10.1080/10408360600778836

    Article  CAS  Google Scholar 

  95. Chen R-J, Chen S-U, Chou C-H, Lin M-C (2011) Lysophosphatidic acid receptor 2/3-mediated IL-8-dependent angiogenesis in cervical cancer cells. Int J Cancer 131:789–802. https://doi.org/10.1093/jnci/djn024

    Article  CAS  Google Scholar 

  96. Jeon ES, Heo SC, Lee IH, Choi YJ, Park JH, Choi KU, Park DY, Suh D-S, Yoon M-S, Kim JH (2010) Ovarian cancer-derived lysophosphatidic acid stimulates secretion of VEGF and stromal cell-derived factor-1α from human mesenchymal stem cells. Exp Mol Med 42:280. https://doi.org/10.1016/j.yexmp.2005.07.004

    Article  CAS  Google Scholar 

  97. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ Jr, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708. https://doi.org/10.1056/NEJMoa1308573

    Article  CAS  Google Scholar 

  98. Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SAA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci 108:3749–3754. https://doi.org/10.1073/pnas.1014480108

    Article  Google Scholar 

  99. Wick W, Wick A, Weiler M, Weller M (2011) Patterns of progression in malignant glioma following anti-VEGF therapy: perceptions and evidence. Curr Neurol Neurosci Rep 11:305–312. https://doi.org/10.1016/S1474-4422(08)70260-6

    Article  CAS  Google Scholar 

  100. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, Pradere JP, Pettit TR, Wakelam MJO, Saulnier-Blache JS, Mummery CL, Moolenaar WH, Jonkers J (2006) Autotaxin, a secreted Lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26:5015–5022. https://doi.org/10.1128/MCB.02419-05

    Article  CAS  Google Scholar 

  101. Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, Ota M, Noji S, Yatomi Y, Aoki J, Arai H (2006) Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281:25822–25830. https://doi.org/10.1074/jbc.M605142200

    Article  CAS  Google Scholar 

  102. Martínez-Burgo B, Cobb SL, Pohl E, Kashanin D, Paul T, Kirby JA, Sheerin NS, Ali S (2019) A C-terminal CXCL8 peptide based on chemokine-glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology 157:173–184. https://doi.org/10.1111/imm.13063

    Article  CAS  Google Scholar 

  103. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncology 7:122–133. https://doi.org/10.1215/S1152851704001061

    Article  CAS  Google Scholar 

  104. Wells AD, Rai SK, Salvato MS, Band H, Malkovsky M (1997) Restoration of MHC class I surface expression and endogenous antigen presentation by a molecular chaperone. Scand J Immunol 45:605–612

    Article  CAS  Google Scholar 

  105. Neeley YC, McDonagh KT, Overwijk WW, Restifo NP, Sanda MG (2002) Antigen-specific tumor vaccine efficacy in vivo against prostate cancer with low class I MHC requires competent class II MHC. Prostate 53:183–191. https://doi.org/10.1002/pros.10136

    Article  CAS  Google Scholar 

  106. Murphy JP, Kim Y, Clements DR, Konda P, Schuster H, Kowalewski DJ, Paulo JA, Cohen AM, Stevanovic S, Gygi SP, Gujar S (2019) Therapy-induced MHC I ligands shape neo-antitumor CD8 T cell responses during oncolytic virus-based cancer immunotherapy. J Proteome Res. https://doi.org/10.1021/acs.jproteome.9b00173

  107. Ugurel S, Spassova I, Wohlfarth J, Drusio C, Cherouny A, Melior A, Sucker A, Zimmer L, Ritter C, Schadendorf D, Becker JC (2019) MHC class-I downregulation in PD-1/PD-L1 inhibitor refractory Merkel cell carcinoma and its potential reversal by histone deacetylase inhibition: a case series. Cancer Immunol Immunother 68:983–990. https://doi.org/10.1007/s00262-019-02341-9

    Article  CAS  Google Scholar 

  108. Seliger B, Dunn T, Schwenzer A, Casper J, Huber C, Schmoll HJ (1997) Analysis of the MHC class I antigen presentation machinery in human embryonal carcinomas: evidence for deficiencies in TAP, LMP and MHC class I expression and their upregulation by IFN-gamma. Scand J Immunol 46:625–632

    Article  CAS  Google Scholar 

  109. Huang M-C, Graeler M, Shankar G, Spencer J, Goetzl EJ (2002) Lysophospholipid mediators of immunity and neoplasia. Biochim Biophys Acta 1582:161–167. https://doi.org/10.1016/s1388-1981(02)00151-8

    Article  CAS  Google Scholar 

  110. Gustin C, Van Steenbrugge M, Raes M (2008) LPA modulates monocyte migration directly and via LPA-stimulated endothelial cells. Am J Phys Cell Phys 295:C905–C914. https://doi.org/10.1074/jbc.270.43.25549

    Article  CAS  Google Scholar 

  111. Lee H, Liao JJ, Graeler M, Huang M-C, Goetzl EJ (2002) Lysophospholipid regulation of mononuclear phagocytes. Biochim Biophys Acta 1582:175–177. https://doi.org/10.1016/s1388-1981(02)00153-1

    Article  CAS  Google Scholar 

  112. Nagahashi M, Abe M, Sakimura K, Takabe K, Wakai T (2018) The role of sphingosine-1-phosphate in inflammation and cancer progression. Cancer Sci 109:3671–3678. https://doi.org/10.1111/cas.13802

    Article  CAS  Google Scholar 

  113. Saatian B, Zhao Y, He D, Georas SN, Watkins T, Spannhake EW, Natarajan V (2006) Transcriptional regulation of lysophosphatidic acid-induced interleukin-8 expression and secretion by p38 MAPK and JNK in human bronchial epithelial cells. Biochem J 393:657–668. https://doi.org/10.1042/BJ20050791

    Article  CAS  Google Scholar 

  114. Geho DH, Bandle RW, Clair T, Liotta LA (2005) Physiological mechanisms of tumor-cell invasion and migration. Physiology 20:194–200. https://doi.org/10.1083/jcb.123.3.653

    Article  CAS  Google Scholar 

  115. Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM (2010) Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic AMP/EPAC/Rac1 signaling pathway in Invadopodia formation. Cancer Res 70:4634–4643. https://doi.org/10.1158/0008-5472.CAN-09-3813

    Article  CAS  Google Scholar 

  116. Hoelzinger DB, Demuth T, Berens ME (2007) Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J Natl Cancer Inst 99:1583–1593. https://doi.org/10.1200/JCO.2005.03.2185

    Article  CAS  Google Scholar 

  117. Ko P, Kim D, You E, Jung J, Oh S, Kim J, Lee K-H, Rhee S (2016) Extracellular matrix rigidity-dependent Sphingosine-1-phosphate secretion regulates metastatic cancer cell invasion and adhesion. Sci Rep 6:21564. https://doi.org/10.1038/srep21564

    Article  CAS  Google Scholar 

  118. Ham M, Moon A (2013) Inflammatory and microenvironmental factors involved in breast cancer progression. Arch Pharm Res 36:1419–1431. https://doi.org/10.1007/s12272-013-0271-7

    Article  CAS  Google Scholar 

  119. Boucharaba A, Serre C-M, Grès S, Saulnier-Blache JS, Bordet J-C, Guglielmi J, Clézardin P, Peyruchaud O (2004) Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 114:1714–1725. https://doi.org/10.1016/0014-5793(93)80250-X

    Article  CAS  Google Scholar 

  120. Batchelor TT, Reardon DA, de Groot JF, Wick W, Weller M (2014) Antiangiogenic therapy for glioblastoma: current status and future prospects. Clin Cancer Res 20:5612–5619. https://doi.org/10.1158/1078-0432.CCR-14-0834

    Article  CAS  Google Scholar 

  121. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong Y-K, Aldape KD, Lhermitte B, Pietsch T, Grujicic D, Steinbach JP, Wick W, Tarnawski R, Nam D-H, Hau P, Weyerbrock A, Taphoorn MJB, Shen C-C, Rao N, Thurzo L, Herrlinger U, Gupta T, Kortmann R-D, Adamska K, McBain C, Brandes AA, Tonn JC, Schnell O, Wiegel T, Kim C-Y, Nabors LB, Reardon DA, van den Bent MJ, Hicking C, Markivskyy A, Picard M, Weller M, European Organisation for Research and Treatment of Cancer (EORTC), Canadian Brain Tumor Consortium, CENTRIC Study Team (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15:1100–1108. https://doi.org/10.1016/S1470-2045(14)70379-1

    Article  CAS  Google Scholar 

  122. Gotoh M, Fujiwara Y, Yue J, Liu J, Lee S, Fells J, Uchiyama A, Murakami-Murofushi K, Kennel S, Wall J, Patil R, Gupte R, Balazs L, Miller DD, Tigyi GJ (2012) Controlling cancer through the autotaxin–lysophosphatidic acid receptor axis. Biochm Soc Trans 40:31–36. https://doi.org/10.1002/cncr.24907

    Article  CAS  Google Scholar 

  123. Eder AM, Sasagawa T, Mao M, Aoki J, Mills GB (2000) Constitutive and lysophosphatidic acid (LPA)-induced LPA production: role of phospholipase D and phospholipase A2. Clin Cancer Res 6:2482–2491

    CAS  Google Scholar 

  124. Mills GB, May C, Hill M, Campbell S, Shaw P, Marks A (1990) Ascitic fluid from human ovarian cancer patients contains growth factors necessary for intraperitoneal growth of human ovarian adenocarcinoma cells. J Clin Invest 86:851–855. https://doi.org/10.1172/JCI114784

    Article  CAS  Google Scholar 

  125. Westermann AM, Havik E, Postma FR, Beijnen JH, Dalesio O, Moolenaar WH, Rodenhuis S (1998) Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol 9:437–442. https://doi.org/10.1023/a:1008217129273

    Article  CAS  Google Scholar 

  126. Li Y-Y, Zhang W-C, Zhang J-L, Zheng C-J, Zhu H, Yu H-M, Fan L-M (2015) Plasma levels of lysophosphatidic acid in ovarian cancer versus controls: a meta-analysis. Lipids Health Dis 14:72. https://doi.org/10.1186/s12944-015-0071-9

    Article  CAS  Google Scholar 

  127. Cao L, Zhang Y, Fu Z, Dong L, Yang S, Meng W, Li Y, Zhang W, Zhang J, Zheng C, Zhu H, Fan L (2015) Diagnostic value of plasma lysophosphatidic acid levels in ovarian cancer patients: a case-control study and updated meta-analysis. J Obstet Gynaecol Res 41:1951–1958. https://doi.org/10.1111/jog.12806

    Article  CAS  Google Scholar 

  128. Bai C-Q, Yao Y-W, Liu C-H, Zhang H, Xu X-B, Zeng J-L, Liang W-J, Yang W, Song Y (2014) Diagnostic and prognostic significance of lysophosphatidic acid in malignant pleural effusions. J Thorac Dis 6:483–490. https://doi.org/10.3978/j.issn.2072-1439.2014.02.14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ng, W., Morokoff, A. (2021). Lysophospholipid Signalling and the Tumour Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1270. Springer, Cham. https://doi.org/10.1007/978-3-030-47189-7_8

Download citation

Publish with us

Policies and ethics