Skip to main content

Contribution of Human and Animal to the Microbial World and Ecological Balance

  • Chapter
  • First Online:
Gut Microbiome and Its Impact on Health and Diseases

Abstract

Diversity of the gut microbiota can be attributed to diets, lifestyle, and daily practices, including antibiotic/antimicrobial use and sanitation/cleanness of the host’s environment. These factors can also be linked to the prevalence of acute or chronic diseases such as inflammatory bowel disease, diabetes, obesity, and allergies. Therefore, the diversity of the external environment and its microbiome, or microbial ecology, will play significant roles in building and shaping the microbiome in the human body. However, the various sources from which these microbes can originate, the conditions that affect their survival, and the capability of future colonization are not yet fully understood. In this chapter, we aim to discuss some of the factors, specifically origin of various types of microbes/contributors, their survival ability in the environment, and their ecological balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 29 June 2021

    The original version of this chapter was revised. The co-author Dr. Ashley Houser’s name has been incorrectly mentioned as “Ashely” instead of “Ashley”. This is now updated in the chapter “Contribution of Human and Animal to the Microbial World and Ecological Balance.”

References

  • Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827.

    CAS  Google Scholar 

  • Al-Dhabi, N. A., Esmail, G. A., Duraipandiyan, V., Valan Arasu, M., & Salem-Bekhit, M. M. (2015). Isolation, identification and screening of antimicrobial thermophilic Streptomyces sp. Al-Dhabi-1 isolated from Tharban hot spring, Saudi Arabia. Extremophiles, 20, 79–90.

    PubMed  Google Scholar 

  • Arce-Rodríguez, A., Puente-Sánchez, F., Avendaño, R., Libby, E., Rojas, L., Cambronero, J. C., Pieper, D. H., Timmis, K. N., & Chavarría, M. (2016). Pristine but metal-rich Río Sucio (Dirty River) is dominated by Gallionella and other iron-sulfur oxidizing microbes. Extremophiles, 21, 235–243.

    PubMed  Google Scholar 

  • Bahrndorff, S., Alemu, T., Alemneh, T., & Nielsen, J. L. (2016). The microbiome of animals: Implications for conservation biology. International Journal of Genomics, 2016, 1–7.

    Google Scholar 

  • Belser, J. A., Wadford, D. A., Pappas, C., Gustin, K. M., Maines, T. R., Pearce, M. B., Zeng, H., Swayne, D. E., Pantin-Jackwood, M., Katz, J. M., & Tumpey, T. M. (2010). Pathogenesis of pandemic influenza a (H1N1) and triple-reassortant swine influenza a (H1) viruses in mice. Journal of Virology, 84, 4194–4203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharya, A., Goyal, N., & Gupta, A. (2007). Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: Application in alkaline and salt-rich dyeing effluent treatment. Extremophiles, 21, 479–490.

    Google Scholar 

  • Brandt, L. J. (2012). Fecal transplantation for the treatment of Clostridium difficile infection. Gastroenterología y Hepatología, 8(3), 191–194.

    Google Scholar 

  • Cabral, J. P. (2010). Water microbiology. Bacterial pathogens and water. IJERPH, 7, 3657–3703.

    PubMed  PubMed Central  Google Scholar 

  • Chandler, J. A., Lang, J. M., Bhatnagar, S., Eisen, J. A., & Kopp, A. (2011). Bacterial communities of diverse Drosophila species: Ecological context of a host-microbe model system. PLoS Genetics, 7, e1002272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung, M. Y., Liang, S., & Lee, J. (2013). Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology, 51, 1–10.

    CAS  Google Scholar 

  • Cho, I., & Blaser, M. J. (2012). The human microbiome: At the interface of health and disease. Nature Reviews. Genetics, 13(4), 260–270.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clements, K. D. (1997). Fermentations and gastrointestinal microorganisms in fishes. In R. I. Machie & B. A. White (Eds.), Gastrointestinal microbiology. Boston: Chapman & Hall Microbiology Series. Springer.

    Google Scholar 

  • Editorial. (2011). Microbiology by numbers. Nature Reviews. Microbiology, 9, 628.

    Google Scholar 

  • Ejtahed, H. S., Hasani-Ranjbar, S., & Larijani, B. (2017). Human microbiome as an approach to personalized medicine. Alternative Therapies in Health and Medicine, 23, 8–9.

    PubMed  Google Scholar 

  • Elliott, M. L. (2011). First report of Fusarium wilt caused by Fusarium oxysporum f. sp. palmarum on Canary Island date palm in Florida. Plant Disease, 95(3), 356–356.

    CAS  PubMed  Google Scholar 

  • Fenselau, S., Balbo, I., & Bonas, U. (1992). Determinants of pathogenicity in Xanthomonas campestris pv. vesicatoria are related to proteins involved in secretion in bacterial pathogens of animals. Molecular Plant-Microbe Interactions, 5, 390–396.

    CAS  PubMed  Google Scholar 

  • Fernandez, C. (2019). No guts, no glory: How microbiome research is changing medicine. Labio Tech. https://labiotech.eu/features/gut-microbiome-research/. Accessed 17 June 2019.

  • Forster, S. C., Kumar, N., Anonye, B. O., Almeida, A., Viciani, E., Stares, M. D., Dunn, M., Mkandawire, T. T., Zhu, A., Shao, Y., Pike, L. J., Louie, T., Browne, H. P., Mitchell, A. L., Neville, B. A., Finn, R. D., & Lawley, T. D. (2019). A human gut bacterial genome and culture collection for improved metagenomic analyses. Nature Biotechnology, 37, 186–192.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gowtham, H. G., Murali, M., Singh, S. B., Lakshmeesha, T. R., Murthy, K. N., Amruthesh, K. N., & Niranjana, S. R. (2018). Plant growth promoting rhizobacteria- Bacillus amyloliquefaciens improves plant growth and induces resistance in chilli against anthracnose disease. Biological Control, 126, 209–217.

    CAS  Google Scholar 

  • Gritz, E. C., & Bhandari, V. (2015). The human neonatal gut microbiome: A brief review. Frontiers in Pediatrics, 3, 17–27.

    PubMed  PubMed Central  Google Scholar 

  • Gyles, C. (2016). One medicine, one health, one world. Canadian Veterinary Journal, 49(11), 1063–1065.

    Google Scholar 

  • Hasan, N., & Yang, H. (2019). Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 7, e7502.

    PubMed  PubMed Central  Google Scholar 

  • Holtenius, K., & Bjornhag, C. (1985). The colonic separation mechanism in the guinea-pig (Cavia porcellus) and the chinchilla (Chinchilla laniger). Comparative Biochemistry and Physiology. A, Comparative Physiology, 82, 537–542.

    CAS  PubMed  Google Scholar 

  • IOM (Institute of Medicine). (2009). Microbial evolution and co-adaptation: a tribute to the life and scientific legacies of Joshua Lederberg. Washington, DC: The National Academies Press.

    Google Scholar 

  • Jandhyala, S. M. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29), 8787–8803.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jatzlauk, G., Bartel, S., Heine, H., Schloter, M., & Krauss-Etschmann, S. (2017). Influences of environmental bacteria and their metabolites on allergies, asthma, and host microbiota. Allergy, 72(12), 1859–1867.

    CAS  PubMed  Google Scholar 

  • Khan, A. G. (2005). Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18, 355–364.

    CAS  PubMed  Google Scholar 

  • Kho, Z., & Lal, S. (2018). The human gut microbiome – a potential controller of wellness and disease. Frontiers in Microbiology, 9, 1835.

    PubMed  PubMed Central  Google Scholar 

  • Kostic, A. D., Howitt, M. R., & Garrett, W. S. (2013). Exploring host-microbiota interactions in animal models and humans. Genes & Development, 27, 701–718.

    CAS  Google Scholar 

  • Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., Britt, E. B., Fu, X., Wu, Y., Li, L., Smith, J. D., DiDonato, J. A., Chen, J., Li, H., Wu, G. D., Lewis, J. D., Warrier, M., Brown, J. M., Krauss, R. M., Tang, W. H. W., Bushman, F. D., Lusis, A. J., Hazen, S. L. (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 19(5), 576–585.

    Google Scholar 

  • Lane, N. (2015). The unseen world: reflections on Leeuwenhoek (1677) “Concerning little animals”. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 370, 1666.

    Google Scholar 

  • Ley, R. E. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 102, 11070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124(4), 837–848.

    CAS  PubMed  Google Scholar 

  • Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S., Liu, X., Liu, C., Wang, X., & Cheng, G. (2019). Review of ammonia-oxidizing bacteria and archaea in freshwater ponds. Reviews in Environmental Science and Biotechnology, 18, 1.

    Google Scholar 

  • McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas, A. E., Dubilier, N., Eberl, G., Fukami, T., Gilbert, S. F., Hentschel, U., King, N., Kjelleberg, S., Knoll, A. H., Kremer, N., Mazmanian, S. K., Metcalf, J. L., Nealson, K., Pierce, N. E., Rawls, J. F., Reid, A., Ruby, E. G., Rumpho, M., Sanders, J. G., Tautz, D., & Wernegreen, J. J. (2013). Animals in a bacterial world, a new imperative for the life sciences. Proceedings of the National Academy of Sciences, 110(9), 3229–3236.

    CAS  Google Scholar 

  • McNear, D. H., Jr. (2013). The rhizosphere – roots, soil and everything in between. Nature Education Knowledge, 4(3), 1.

    Google Scholar 

  • Muyzer, G., Teske, A., Wirsen, C. O., & Jannasch, H. W. (1995). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Archives of Microbiology, 164, 165–172.

    CAS  PubMed  Google Scholar 

  • Oren, A. (2009). Microbial diversity. In Encyclopedia of life sciences. Chichester: Wiley.

    Google Scholar 

  • Prussin, A. J., II, & Marr, L. C. (2015). Sources of airborne microorganisms in the built environment. Microbiome, 3, 78.

    PubMed  PubMed Central  Google Scholar 

  • Raina, J.-B., Eme, L., Pollock, F. J., Spang, A., Archibald, J. M., & Williams, T. A. (2018). Symbiosis in the microbial world: from ecology to genome evolution. Biology Open, 7(2), bio032524.

    PubMed  PubMed Central  Google Scholar 

  • Razavi, B. S., Hoang, D. T., Blagodatskaya, E., & Kuzyakov, Y. (2017). Mapping the footprint of nematodes in the rhizosphere: Cluster root formation and spatial distribution of enzyme activities. Soil Biology and Biochemistry, 115, 213–220.

    CAS  Google Scholar 

  • Relman, D. A. (2012). The human microbiome: Ecosystem resilience and health. Nutrition Reviews, 70, 2–9.

    Google Scholar 

  • Reperant, L. A., Brown, I. H., Haenen, O. L., de Jong, M. D., Osterhaus, A. D., Papa, A., Rimstad, E., Valarcher, J. F., & Kuiken, T. (2016). Companion animals as a source of viruses for human beings and food production animals. Journal of Comparative Pathology, 155(1 Suppl 1), S41–S53.

    CAS  PubMed  Google Scholar 

  • Rothman, J. M., Dierenfeld, E. S., Molina, D. O., Shaw, A. V., Hintz, H. F., & Pell, A. N. (2006). Nutritional chemistry of the diet of gorillas in the Bwindi Impenetrable National Park, Uganda. American Journal of Primatology, 68, 675–691.

    CAS  PubMed  Google Scholar 

  • Schmidt, T. S., Raes, J., & Bork, P. (2018). The human microbiome: From association to modulation. Cell, 172(6), 1198–1215.

    CAS  PubMed  Google Scholar 

  • Schulz, H. N., & De Beer, D. (2002). Uptake rates of oxygen and sulfide measured with individual Thiomargarita namibiensis cells by using microelectrodes. Applied and Environmental Microbiology, 68, 5746–5749.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shade, A., Peter, H., Allison, S., Baho, D., Berga, M., Buergmann, H., Huber, D., Langenheder, S., Lennon, J., Martiny, J., Matulich, K., Schmidt, T., & Handelsman, J. (2012). Fundamentals of microbial community resistance and resilience. Frontiers in Microbiology, 3, 417.

    PubMed  PubMed Central  Google Scholar 

  • Shreiner, A. B., Kao, J. Y., & Young, V. B. (2015). The gut microbiome in health and in disease. Current Opinion in Gastroenterology, 31(1), 69–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tasnim, N., Abulizi, N., Pither, J., Hart, M. M., & Gibson, D. L. (2017). Linking the gut microbial ecosystem with the environment: Does gut health depend on where we live? Frontiers in Microbiology, 8, 1935.

    PubMed  PubMed Central  Google Scholar 

  • The Human Microbiome Project Consortium. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.

    PubMed Central  Google Scholar 

  • Tomley, F. M., & Shirley, M. W. (2009). Livestock infectious diseases and zoonoses. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 2637–2642.

    Google Scholar 

  • Trinh, P., Zaneveld, J. R., Safranek, S., & Rabinowitz, P. M. (2018). One health relationships between human, animal, and environmental microbiomes: A mini-review. Frontiers in Public Health, 6, 235.

    PubMed  PubMed Central  Google Scholar 

  • Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. BMJ, 361, k2179.

    PubMed  PubMed Central  Google Scholar 

  • Vivarelli, S., Salemi, R., Candido, S., Falzone, L., Santagati, M., Stefani, S., Torino, F., Banna, G. L., Tonini, G., & Libra, M. (2019). Gut microbiota and cancer: From pathogenesis to therapy. Cancers, 11(1), 38.

    CAS  PubMed Central  Google Scholar 

  • Wiedemann, A., Virlogeux-Payant, I., Chaussé, A. M., Schikora, A., & Velge, P. (2015). Interactions of Salmonella with animals and plants. Frontiers in Microbiology, 5, 791.

    PubMed  PubMed Central  Google Scholar 

  • Young, K. D. (2007). Bacterial morphology: Why have different shapes? Current Opinion in Microbiology, 10(6), 596–600.

    PubMed  PubMed Central  Google Scholar 

  • Zierer, J., Jackson, M. A., Kastenmüller, G., Mangino, M., Long, T., Telenti, A., Mohney, R. P., Small, K. S., Jordana, T., Bell, J. T., Steves, C. J., Valdes, A. M., Spector, T. D., & Menni, C. (2018). The fecal metabolome as a functional readout of the gut microbiome. Nature Genetics, 50, 790–795.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zajeba Tabashsum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabashsum, Z., Alvarado-Martinez, Z., Houser, A., Padilla, J., Shah, N., Young, A. (2020). Contribution of Human and Animal to the Microbial World and Ecological Balance. In: Biswas, D., Rahaman, S.O. (eds) Gut Microbiome and Its Impact on Health and Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-47384-6_1

Download citation

Publish with us

Policies and ethics