Skip to main content

Basic Concepts of NDE

Handbook of Nondestructive Evaluation 4.0

Abstract

The present chapter introduces several basic aspects of Nondestructive Evaluation (NDE). Its purpose is to explain what characterizes NDE. A brief overview of various methods used for NDE with respect to the challenges of NDE 4.0 will be given. The physical basics will be introduced for the most important methods, including X-ray imaging, thermography, ultrasonic and electromagnetic testing, for instance. Typical NDE tasks and how NDE is applied in the industrial production, service, and research and development will be discussed briefly at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. NDE Resource Center on the WEB.: https://www.nde-ed.org/GeneralResources/IntroToNDT/GenIntroNDT.htm

  2. Wolter B, Dobmann G. Nuclear magnetic resonance as a tool for the characterization of concrete in different stages on its development. In: Schickert G, Wiggenhauser H, editors. Non-destructive testing in civil engineering 1995, vol. 1. Berlin; 1995. (DGZfP-Berichtsbände 48.1) S.181–188.

    Google Scholar 

  3. Bloem P, Greubel D, Dobmann G, Lorentz OK, Wolter B. NMR for non-destructive testing of materials. In: Saarton LA, Zeedijk HB (eds) Proceedings of the 5th European conference on advanced materials and processes and applications. Vol. 4: Characterization and production/design: EUROMAT 97, Maastricht, 21–23 April 1997. Zwijndrecht: Netherlands Society for Materials Science; 1997. ISBN: 90-803513-4-2, p.135–138.

    Google Scholar 

  4. Altpeter I, Tschuncky R, Szielasko K. Electromagnetic techniques for materials characterization. In: Hübschen G, Altpeter I, Herrmann H-G (eds) Materials characterization using nondestructive evaluation (NDE) methods, ScienceDirect (2016). https://www.sciencedirect.com/science/article/pii/B9780081000403000080

  5. Schreiber J, Meyendorf N. New sensor principles based on Barkhausen noise. In: Proceedings of SPIE 6530, sensor systems and networks: phenomena, technology, and applications for NDE and health monitoring (2007), 65300C (2007, 10 April). https://doi.org/10.1117/12.717214

  6. Arunachalam K, Melapudi VR, Udpa L, Udpa SS. Microwave NDT of cement-based materials using far-field reflection coefficients. NDT&E Int. 2006;39:585–93.

    Article  CAS  Google Scholar 

  7. Park J, Nguyen C. An ultrawide-band microwave radar sensor for nondestructive evaluation of pavement subsurface. IEEE Sensors J. 2005;5:942–9.

    Article  Google Scholar 

  8. Kharkovsky S, Akay MF, Hasar UC, Atis CD. Measurement and monitoring of microwave reflection and transmission properties of cement-based specimens. IEEE Trans. Instrum. Meas. 2002;51:1210–8.

    Article  Google Scholar 

  9. Mukherjee S, Tamburrino A, Haq M, Udpa S, Udpa L. Far field microwave NDE of composite structures using time reversal mirror. NDT&E Int. 2018;93:7–17.

    Article  Google Scholar 

  10. Stuchly M, Stuchly S. Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies—a review. IEEE Trans Instrum Meas IM. 1980;29:176–83.

    Article  Google Scholar 

  11. Travassos XL, DAG V, Ida N, Vollaire C, Nicolas A. Characterization of inclusions in a nonhomogeneous GPR problem by artificial neural networks. IEEE Trans Magnet. 2008;44(6):1630–3.

    Article  Google Scholar 

  12. Yang Y. Development of a real-time ultra-wideband see through wall imaging radar system. PhD dissertation, University of Tennessee, Knoxville, TN; 2008.

    Google Scholar 

  13. Yang X, Zheng YR, Ghasr MT, Donnell KM. Microwave imaging from sparse measurements for near-field synthetic aperture radar. IEEE Trans Instr Meas. 2017;66:2680–92.

    Article  Google Scholar 

  14. Ida N. Microwave and Millimeter wave nondestructive testing and evaluation. In: Ida N, Meyendorf N, editors. Handbook of advanced NDE. Cham: Springer; 2019. p. 929–66. https://doi.org/10.1007/978-3-319-26553-7.

    Chapter  Google Scholar 

  15. Anlage SM, Talanov VV, Schwartz AR. Principles of near-field microwave microscopy. In: Kalinin SV, Gruverman A, editors. Scanning probe microscopy: electrical and electromechanical phenomena at the nanoscale, vol. 1. New York: Springer; 2007. p. 215–53.

    Chapter  Google Scholar 

  16. Chen G, Hu B, Takeuchi I, Chang KS, Xiang XD, Wang G. Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries. Meas Sci Technol. 2005;16:248–60. https://doi.org/10.1088/0957-0233/16/1/033.

    Article  Google Scholar 

  17. Rosner BT, Van der Weide DW. High-frequency near field microscopy. Rev Scientific Instrum. 2002;73:2505–25.

    Article  CAS  Google Scholar 

  18. Razvan C, Ida N. Transmission line matrix model for detection of local changes in permeability using a microwave technique. IEEE Trans Mag. 2004;40:651–4.

    Article  Google Scholar 

  19. Tabib-Azar M, Garcia-Valenzuela A, Ponchak G. Evanescent microwave microscopy for high resolution characterization of materials. Norwell: Kluwer; 2002.

    Google Scholar 

  20. Bakhtiari S, Ganchev S, Zoughi R. Open-ended rectangular waveguide for nondestructive thickness measurement and variation detection of lossy dielectric slabs backed by a conducting plate. IEEE Trans Instrum Meas. 1993;42:19–24.

    Article  Google Scholar 

  21. Mazlumi F, Sadeghi SHH, Moini R. Interaction of an open-ended rectangular waveguide probe with an arbitrary shape surface crack in a lossy conductor. IEEE Trans Microwave Theory Tech. 2006;54:3706–11.

    Article  Google Scholar 

  22. Qaddoumi NN, Saleh WM, Abou-Khousa M. Innovative near-field microwave nondestructive testing of corroded metallic structures utilizing open-ended rectangular waveguide probes. IEEE Trans Instrum. Meas. 2007;56:1961–6.

    Article  Google Scholar 

  23. Ida N. Open resonator microwave sensor systems for industrial gauging: a practical design approach. London: IET; 2018.

    Google Scholar 

  24. Li Y, Bowler N, Johnson DB. A resonant microwave patch sensor for detection of layer thickness or permittivity variations in multilayered dielectric structures. IEEE Sensors J. 2011;11:5–15.

    Article  CAS  Google Scholar 

  25. Jonuscheit J. Terahertz techniques in NDE. In: Ida N, Meyendorf N, editors. Handbook of advanced NDE. Cham: Springer; 2019. p. 967–85. https://doi.org/10.1007/978-3-319-26553-7.

    Chapter  Google Scholar 

  26. Armstrong CM. The truth about terahertz. IEEE Spect. 2012;49(9):36–41. https://doi.org/10.1109/MSPEC.2012.6281131.

    Article  Google Scholar 

  27. https://en.wikipedia.org/wiki/Terahertz_time-domain_spectroscopy

    Google Scholar 

  28. https://en.wikipedia.org/wiki/Continuous-wave_radar

    Google Scholar 

  29. May T, Heinz E, Peiselt K, Zieger G, Born D, Zakosarenko V, Brömel A, Anders S, Meyer H-G. Next generation of a sub-millimetre wave security camera utilising superconducting detectors. IOP Publ J Instrum. 2013;8 https://doi.org/10.1088/1748-0221/8/01/P01014.

  30. Luukanen A, Grönberg L, Helistö P, Penttilä JS, Seppä H, Sipola H, Dietlein CR, Grossman EN. Passive Euro-American terahertz camera (PEAT-CAM): passive indoors THz imaging at video rates for security applications. Proc SPIE. 2007;6548 https://doi.org/10.1117/12.719778.

  31. Dong J, Bianca Jackson J, Melis M, et al. Terahertz frequency wavelet domain deconvolution for stratigraphic and subsurface investigation of art painting. Opt Express. 2016;24(23):26972–85.

    Article  Google Scholar 

  32. Fukuchi T, Fuse N, Okada M, et al. Topcoat thickness measurement of thermal barrier coating of gas turbine blade using terahertz wave. Electr Eng Jpn. 2014;189(1):1–8.

    Article  Google Scholar 

  33. Catapano I, Soldovieri F, Mazzola L, Toscano C. THz imaging as a method to detect defects of aeronautical coating. J Infrared Millimeter Terahertz Waves. 2017;3810:1264–77.

    Article  Google Scholar 

  34. Ho L, Müller R, Gordon KC, et al. Terahertz pulsed imaging as an analytical tool for sustained-release tablet film coating. Eur J Pharm Biopharm. 2009;71(1):117–23.

    Article  CAS  Google Scholar 

  35. Stoik CD, Bohn MJ, Blackshire JL. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt Express. 162:17039–51.

    Google Scholar 

  36. Cristofani E, Friederich F, Wohnsiedler S, Beigang R. Non-destructive testing potential evaluation of a THz frequency-modulated continuous-wave imager for composite materials inspection. Opt Eng. 2014;53(03) https://doi.org/10.1117/1.OE.53.3.031211.

  37. Krebber K. Fiber optic sensors for SHM – from laboratory to industrial applications. In: OSA conference “Applied Industrial Optics: Spectroscopy, Imaging and Metrology (AIO), Seattle, WA, USA, 2014, June .

    Google Scholar 

  38. López-Higuera JM, Rodriguez L, Quintela A, Cobo A. Fiber optics in structural health monitoring. In: Proceedings of SPIE – the international society for optical engineering 7853, 2010, November.

    Google Scholar 

  39. Meyendorf N Frankenstein B, Schubert L. Structural health monitoring for aircraft, ground transportation vehicles, wind turbines and pipes – prognosis. In: Paipetis AS (eds) Emerging technologies in non-destructive testing V: proceedings of the fifth conference on emerging technologies in NDT, Ioannina, Greece, 19 – 21 September 2011 Boca Raton, FL: CRC Press, 2012. ISBN: 0-415-62131-3 ISBN: 978-0-415-62131-1 ISBN: 978-0-203-11445-2, p.15–22.

    Google Scholar 

  40. Minakuchi S, Takeda N. Recent advancement in optical fiber sensing for aerospace composite structures. Photon Sens. 2013;3:345–54. Springer open access.

    Google Scholar 

  41. Shell EB, Khobaib M, Hoying J, Simon L, Kacmar C, Kramb V, Donley M, Eylon D. Optical detection of surface damage. In: NGH M, Nagy RSI, editors. Nondestructive materials characterization – with applications to aerospace materials. Springer; 2003.

    Google Scholar 

  42. Günther H Im Reiche Röntgens – Eine Einführung in die Röntgentechnik. Stuttgart: Kosmos – Gesellschaft der Naturfreunde, Franckh’sche Verlagshandlung; 1930.

    Google Scholar 

  43. Ardenne MV. Neue Widerstandsverstärker mit hohen Verstärkungsgraden. Radiotechnische Monatsschrift, year VI, issue 12/1929. Wien: Radio Amateur; 1929. German; 1929.

    Google Scholar 

  44. Oppermann M. Zerstörungsfreie Analyse- und Prüfverfahren zur Detektion von Fehlern und Ausfällen in elektronischen Baugruppen. Templin: Verlag Dr. Markus A. Detert; 2014.

    Google Scholar 

  45. Schumacher D. Beitrag zur ZfP von photonenzählenden und spektralauflösenden Röntgenmatrixdetektoren am Beispiel von Werkstoffverbunden. PhD Thesis, TU Dresden, 2019.

    Google Scholar 

  46. Pohle R. Digital image processing for automated weld inspection. PhD Thesis, TU Magdeburg, 1994.

    Google Scholar 

  47. Kastner J, Heinzl C. X-ray tomography. In: Ida N, Meyendorf N (eds) Handbook of advanced nondestructive evaluation. Springer; 2019. p. 1095.

    Google Scholar 

  48. Eberhard H. Lehmann. Anlagen und Möglichkeiten für Neutronen Imaging am PSI. 18. Sitzung Fachaussschuss Durchstrahlungsprüfung der DGzfP, 25. November. am Paul Scherrer Institut; 2015.

    Google Scholar 

  49. Staab TEM, Zschech E, Krause-Rehberg R. Positron lifetime measurements for characterization of nano-structural changes in the age hardenable AlCuMg 2024 alloy. J Mat Sci. 2000;35:4667–72.

    Article  CAS  Google Scholar 

  50. Coffey E. Acoustic resonance testing. In: Proceedings of future of instrumentation international workshop (FIIW) 8–9 October 2012, Gatlinburg, USA, 2012.

    Google Scholar 

  51. Vivek Hari Sankaran, Low cost inline NDT system fir internal defect detection in automotive components using acoustic resonance testing. In: Proceedings of the national seminar & exhibitionon non-destructive evaluation NDE, December 8–10, 2011.

    Google Scholar 

  52. Kühnicke E.. Elastische Wellen in geschichteten Festkörpersystemen: Modellierungen mit Hilfe von Integraltransformationsmethoden. Simulationsrechnungen für Ultraschallanwendungen. Bonn: TIMUG e.V; 2001.

    Google Scholar 

  53. Wolter K, Bieberle M, Budzier H, Zerna T. Zerstörungsfreie Prüfung elektronischer Baugruppen mittels bildgebender Verfahren. Templin: Verlag Dr. Markus A. Detert; 2012. p. 2012.

    Google Scholar 

  54. Krestel E. (publisher, 1988). “Bildgebende Systeme für die medizinische Diagnostik”, 2nd edition. Berlin/München: Siemens Aktiengesellschaft; 1988.

    Google Scholar 

  55. von Bernus L, Bulavinov, A, Jonet D, Kroning M, Dalichov M, Reddy KM, Sampling phased array a new technique for signal processing and ultrasonic imaging. ECNDT 2006 – We.3.1.2.

    Google Scholar 

  56. Tweedie A, O'Leary RL, Harvey G, Gachagan A, Holmes C, Wilcox PD, Drinkwater BW, Total focussing method for volumetric imaging in immersion non destructive evaluation, published in: 2007 IEEE Ultrasonics symposium proceedings, date of conference: 28–31 Oct. 2007.

    Google Scholar 

  57. Corl P, Kino G. A real-time synthetic aperture imaging system. In: Acoustical imaging. Springer; 1980. p. 341–55.

    Chapter  Google Scholar 

  58. Jensen JA, Nikolov SI, Gammelmark KL, Pedersen MH. Synthetic aperture ultrasound imaging. Ultrasonics. 2006;44:e5–e15.

    Article  Google Scholar 

  59. NG Meyendorf, P Heilmann, LJ Bond, NDE4.0 in manufacturing: challenges and opportunities for NDE in the 21st century. Mater Eval, 78, Issue 7, 2020.

    Google Scholar 

  60. Dobmann G, Meyendorf N, Schneider E. Nondestructive characterization of materials A growing demand for describing damage and service-life-relevant aging processes in plant components. Nuclear Eng Design. 171(1–3):95–112.

    Google Scholar 

  61. Meyendorf NGH, Rösner H, Kramb V, Sathish S. Thermo-acoustic fatigue characterization. Ultrasonics. 40(1–8):427–34.

    Google Scholar 

  62. Beckhoff B, Kanngießer B, Langhoff N, Wedell R, Wolff H. Handbook of practical X-ray fluorescence analysis. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Meyendorf .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Meyendorf, N., Ida, N., Oppermann, M. (2021). Basic Concepts of NDE. In: Meyendorf, N., Ida, N., Singh, R., Vrana, J. (eds) Handbook of Nondestructive Evaluation 4.0. Springer, Cham. https://doi.org/10.1007/978-3-030-48200-8_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48200-8_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48200-8

  • Online ISBN: 978-3-030-48200-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Basic Concepts of NDE
    Published:
    05 October 2021

    DOI: https://doi.org/10.1007/978-3-030-48200-8_35-2

  2. Original

    Basic Concepts of NDE
    Published:
    18 August 2021

    DOI: https://doi.org/10.1007/978-3-030-48200-8_35-1