Skip to main content

Biobased Materials for Medical Applications

  • Chapter
  • First Online:
Biomedical Materials

Abstract

Carbon is the most important biobased material that forms the backbone of life as we know it. Based on this fundamental fact, it is no surprise that carbon-based materials have played an integral role in the development of medical materials. Biobased materials will continue to play an even greater role in medicine as we uncover more of the nuanced mechanisms that determine the multiple roles that carbon plays in biological systems. The purpose of this chapter is to introduce biobased materials and the unique roles that they play in medical products. The important role of carbon will be highlighted while focusing on the role of biobased materials in healthcare and medical products including high surface area adsorbents, recycling of biowaste products, and tailored gut microbiome-based products and therapies that can proactively prevent health challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alshehri AM, Wilson OC Jr, Dahal B, Philip J, Luo X, Raub CB. Magnetic nanoparticle-loaded alginate beads for local micro-actuation of in vitro tissue constructs. Colloids Surf B: Biointerfaces. 2017;159:945–55.

    Article  CAS  Google Scholar 

  2. Anderson HC. Molecular biology of matrix vesicles. Clin Ortho Rel Res. 1995;314:266–80.

    Google Scholar 

  3. Atlan G, Balmain N, Berland S, Vidal B, Lopez E. Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci Paris/Life Sci. 1997;320:253–8.

    Article  CAS  Google Scholar 

  4. Badylak SF, Taylor D, Uygun K. Whole organ tissue engineering: decellularization and recellularization of three dimensional matrix scaffolds. Annu Rev Biomed Eng. 2011;13(1):27–53.

    Article  CAS  Google Scholar 

  5. Barkana R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature. 2018;555(7694):71–4.

    Article  CAS  Google Scholar 

  6. Ben-Arye T, Levenberg S. Tissue engineering for clean meat production. Front Sustain Food Syst. 2019;3(article 46):1–19. https://doi.org/10.3389/fsufs.2019.00046.

    Article  Google Scholar 

  7. Bharadwaj S, Liu G, Shi Y, Wu R, Yang B, He T, Fan Y, Lu X, Zhou X, Liu H, Atala A, Rohozinski J, Zhang Y. Multi-potential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells. 2013;31(9):1840–56. https://doi.org/10.1002/stem.1424.

    Article  CAS  Google Scholar 

  8. Bian G, Gloor GB, Gong A, Jia C, et al. The gut microbiota of healthy aged Chinese is similar to that of the healthy young. mSphere. 2017;2(5):e00327–17.

    Article  Google Scholar 

  9. Blumenfeld NR, Kang HJ, Fenzl A, Song Z, et al. A direct tissue-grafting approach to increasing endogenous brown fat. Sci Rep. 2018;8(7957):1–12. https://doi.org/10.1038/s41598-018-25866-y.

    Article  CAS  Google Scholar 

  10. Bombelli P, Howe CJ, Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol. 2017;27(6):PR292–3.

    Article  CAS  Google Scholar 

  11. Bomgardner M. Extending shelf life with natural preservatives. Chem Eng News. 2014;92(6):13–4.

    Google Scholar 

  12. Bomgardner M. Dandelions, the scourge of lawns, may be a fount of rubber. Chem Eng News. 2016;94(30):28–9.

    Google Scholar 

  13. Bonfield W, Grynpas MD, Tully AE, Bowman J, Abram J. Hydroxyapatite reinforced polyethylene: a mechanically compatible implant material for bone replacement. Biomaterials. 1981;2(3):185–6.

    Article  CAS  Google Scholar 

  14. Borum L, Wilson OC Jr. Surface modification of hydroxyapatite: I Dodecyl alcohol. Biomaterials. 2003a;24(21):3671–9.

    Article  CAS  Google Scholar 

  15. Borum L, Wilson OC Jr. Surface modification of hydroxyapatite: II Silica. Biomaterials. 2003b;24(21):3681–8.

    Article  CAS  Google Scholar 

  16. Bowman JD, Rogers AEE, Monsalve RA, Mozdzen TJ, Mahesh N. An absorption profile centered at 78 megahertz in the sky-averaged spectrum. Nature. 2018;555(7694):67–70.

    Article  CAS  Google Scholar 

  17. Brooks AW, Priya S, Blekhman R, Bordenstein SR. Gut microbiota diversity across ethnicities in the United States. PLoS Biol. 2018;16(12):e2006842. https://doi.org/10.1371/journal.pbio.2006842.

    Article  CAS  Google Scholar 

  18. Calvert P, Mann S. Synthetic and biological composites formed by in situ precipitation. J Mater Sci. 1988;23:3801–15.

    Article  CAS  Google Scholar 

  19. Carlisle EM. Silicon: a possible factor in bone calcification. Science. 1970;167:279–80.

    Article  CAS  Google Scholar 

  20. Catterson JH, Khericha M, Dyson MC, Vincent AJ, Callard R, Haveron SM, Rajasingam A, Ahmad M, Partridge L. Short-term, intermittent fasting induces long-lasting gut health and TOR-independent lifespan extension. Curr Biol. 2018;28(11):1714–1724.e4. https://doi.org/10.1016/j.cub.2018.04.015.

    Article  CAS  Google Scholar 

  21. Chen PY, Lin AYM, McKittrick J, and Meyers A. Structure and mechanical properties of crab exoskeletons. Acta Biomaterialia. 2008; 4(3):587–596.

    Google Scholar 

  22. Constantinides MG, Link VM, Tamoutounour S, Wong AC, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366(6464):445.

    Article  CAS  Google Scholar 

  23. Cummins C, Seale M, Macente A, Certini D, Maestropaolo E, Viola IM, Nakayama M. A separated vortex ring underlies the flight of the dandelion. Nature. 2018;562:414–8. https://doi.org/10.1038/s41586-018-0604-2.

    Article  CAS  Google Scholar 

  24. Curran M. Do bio-based products move us toward sustainability? A look at three USEPA case studies. Environ Prog. 2003;22(4):277–29.

    Article  CAS  Google Scholar 

  25. Curran M. Biobased materials. In: Othmer K, editor. Encyclopedia of chemical technology; 2010.

    Google Scholar 

  26. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini PG, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS. 2010;107(33):14691–6. https://doi.org/10.1073/pnas.1005963107.

    Article  Google Scholar 

  27. Demaine ED, Tachi T. Origamizer: a practical algorithm for folding any polyhedron. In: Proceedings of the 33rd international symposium on computational geometry (SoCG 2017), Brisbane, 4–7 July 2017; 2017, p. 34:1–34:15.

    Google Scholar 

  28. Derda R, Laromaine A, Mammoto A, Tang SKY, et al. Paper-supported 3D cell culture for tissue-based bioassays. Proc Natl Acad Sci. 2009;106:18457–62.

    Article  CAS  Google Scholar 

  29. Derda R, Tang SK, Laromaine A, Mosadegh B, Hong E, Mwangi M, Mammoto A, Ingber DE, Whitesides GM. Multizone paper platform for 3D cell cultures. PLoS One. 2011;6(5):18940. https://doi.org/10.1371/journal.pone.0018940.

    Article  CAS  Google Scholar 

  30. Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 2000;289:1501–4.

    Article  CAS  Google Scholar 

  31. Edmond M. The power of poop: fecal microbiota transplantation for Clostridium dificile infection. Trans Am Clin Climatol Assoc. 2016;127:71–80.

    Google Scholar 

  32. Eisenstein M. From Menace to medicine. Nature. 2019;572:S2–4.

    Article  CAS  Google Scholar 

  33. Epelbaum E, Krebs H, Lee D. Ab initio calculation of the Hoyle state. Phys Rev Lett. 2011;106:192501.

    Article  CAS  Google Scholar 

  34. Erecky K. Biotechnologie der Fleisch-, Fett-, und Milcherzeugung im landwirtschaftlichen Grossbetriebe: für naturwissenschaftlich gebildete Landwirte verfasst. Berlin: P. Parey; 1919.

    Google Scholar 

  35. Evans ME and Hyde ST. From three dimensional weavings to swollen corneocytes. J. R. Soc. Interface. 2011; 8:1274-1280.

    Google Scholar 

  36. Farha OK, Eryazici I, Jeong NC, Hauser BG, et al. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016–21.

    Article  CAS  Google Scholar 

  37. Fierer N. Earthworm’s place on Earth. Science. 2019;366(6464):425–6.

    Article  CAS  Google Scholar 

  38. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro and nano-structured surfaces on cell behavior. Biomaterials. 1999;20:573–88.

    Article  CAS  Google Scholar 

  39. Fukada E. Piezoelectricity of wood. J Phys Soc Jpn. 1955;10(2):149–54.

    Article  Google Scholar 

  40. Fukuda E, Yasuda I. On the piezoelectric effect of bone. J Phys Soc Jpn. 1957;12(10):1158–62.

    Article  Google Scholar 

  41. Gao H, Ji B, Jager IL, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci U S A. 2003;100(10):5597–6000.

    Article  CAS  Google Scholar 

  42. Gershlak JR, Hernandez S, Fontana G, Perreault LR, et al. Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. Biomaterials. 2017;125:13–22.

    Article  CAS  Google Scholar 

  43. Ghosh TS, Rampelli S, Jeffrey IB, Santoro A, et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: the NU-AGE 1-year dietary intervention across five European countries. Gut. 2020:1–11. https://doi.org/10.1136/gutjnl-2019-319654.

  44. Gibson IR, Bonfield W. Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatite. J Mater Sci Mater Med. 2002;13:685–93.

    Article  CAS  Google Scholar 

  45. Giraud-Guille MM. Liquid crystalline order of biopolymers in cuticles and bones. Micros Res Tech. 1994; 27(5):420-428.

    Google Scholar 

  46. Gombedza F, Evans S, Shin S, Boadi EA, Zhang Q, Nie Z, Bandyopadhyay BC. Melamine promotes calcium crystal formation in three-dimensional microfluidic device. Sci Rep. 2019;9(875):1–14. https://doi.org/10.1038/s41598-018-37191-5.

    Article  CAS  Google Scholar 

  47. Gomes SD, Oliveira CS, Azevedo-Silva J, Casanova M, Barreto J, Pereira H, Chaves S, Rodrigues L, Casal M, Corte-Real M, Baltazar F, Preto A. The role of diet related short chain fatty acids in colorectal cancer metabolism and survival: prevention and therapeutic implications. Curt Med Chem (E-pub ahead of print); 2018. https://doi.org/10.2174/0929867325666180530102050.

  48. Gottardi D, Bukvicki D, Prasad S, Tyagi A. Beneficial effects of spices in food preservation and safety. Front Microbiol. 2016;7 https://doi.org/10.3389/fmicb.2016.01394.Spices.

  49. Gustavsson J, Cederberg C, Sonesson U, van Otterdijk R, and Meybeck A. Global Food Losses and Food Waste: Extent, Causes, and Prevention. Report based on a study conducted for theInternational Congress Save Food at Interpack2011, Düsseldorf, Germany, Food and Agriculture Organization of the United Nations, (FAO) Rome, 2011.

    Google Scholar 

  50. Hase T, Shishido S, Yamamoto S, Yamashita R, et al. Rosmarinic acid suppresses Alzheimer’s disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep. 2019;9:8711. https://doi.org/10.1038/s41598-019-45168-1.

    Article  CAS  Google Scholar 

  51. Hau AK, Kwan TH, Li PK. Melamine toxicity and the kidney. JASN. 2009;20(2):245–50. https://doi.org/10.1681/ASN.2008101065.

    Article  CAS  Google Scholar 

  52. Hench LL, Splinter RJ, Allen WC, and Greenlee TK. Bonding Mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. A. 1971; 5(6):117-141.

    Google Scholar 

  53. Hench LL and Jones JR. Bioactive glasses: Frontiers and challenges. Front. Bioeng. Biotechnol. 2015; 3:194.

    Google Scholar 

  54. Hing KA. Bone repair in the twenty-first century: biology, chemistry or engineering? Philos Trans R Soc Lond A. 2004;362:2821–50.

    Article  CAS  Google Scholar 

  55. Hing KA, Best SM, Bonfield W. Characterization of porous hydroxyapatite. J Mater Sci Mater Med. 1999;10:135–45.

    Article  CAS  Google Scholar 

  56. Hohlfeld E, Mahadevan L. Unfolding the sulcus. Phys Rev Lett. 2011;106:105702.

    Article  CAS  Google Scholar 

  57. Hönicke IM, Senkovska I, Bon V, Baburin IA, et al. Balancing mechanical stability and ultrahigh porosity in crystalline framework materials. Angew Chem. 2018;57(42):13780–3.

    Article  CAS  Google Scholar 

  58. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–8. https://doi.org/10.1126/science.1058709.

    Article  CAS  Google Scholar 

  59. Hoyle F. On nuclear reactions occuring in very hot stars. I. The synthesis of elements from carbon to nickel. Astrophys J Suppl Ser. 1954;1:121.

    Article  CAS  Google Scholar 

  60. Huang J, Liang Y, Hu H, Liu S, et al. Ultrahigh-surface-area hierarchical porous carbon from chitosan: acetic acid mediated efficient synthesis and its application in superior supercapacitors. J Mater Chem A. 2017;5:24775–81.

    Article  CAS  Google Scholar 

  61. Jakus AE, Laronda MM, Rashedi AS, Robinson CM, et al. “Tissue papers” from organ-specific decellularized extracellular matrices. Adv Funct Mater. 2017;27(34):1700992.

    Article  CAS  Google Scholar 

  62. Jolles P, Muzzarelli R. Chitin and Chitinases. Boston: Birkhauser Verlag; 1999.

    Book  Google Scholar 

  63. Katifori E, Alben S, Cerda E, Nelson DR, Jacques DJ. Foldable structures and the natural design of pollen grains. Proc Natl Acad Sci. 2010;107(17):7635–9. https://doi.org/10.1073/pnas.0911223107.

    Article  Google Scholar 

  64. Katti KS, Ambre AH, Peterka N, Katti DR. Use of unnatural amino acids for design of novel organomodified clays as components of nanocomposite biomaterials. Philos Trans R Soc A Math Phys Eng Sci. 2010;368(1917):1963–80. https://doi.org/10.1098/rsta.2010.0008.

    Article  CAS  Google Scholar 

  65. Kim S, Lee HR, Yu SJ, Han M, et al. Hydrogel-laden paper scaffold system for origami-based tissue engineering. PNAS. 2015;112(50):15426–31.

    Article  CAS  Google Scholar 

  66. Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil. 2019;25(1):48–60.

    Article  Google Scholar 

  67. Kunkel SD, Elmore CJ, Bongers KS, Ebert SM, Fox DK, Dyle MC, Bullard SA, Adams CM. Ursolic acid increases skeletal muscle and brown fat and decreases diet induced obesity, glucose intolerance and fatty liver disease. PLoS One. 2012;7(6):e39332. https://doi.org/10.1371/journal.pone.0039332. Published online 2012 Jun 20. PMCID: PMC3379974

    Article  CAS  Google Scholar 

  68. LeGeros RZ. Effect of carbonate on the lattice parameters of apatite. Nature. 1967;4982:403.

    Google Scholar 

  69. Legeros RZ, Tung MS. Chemical stability of carbonate and fluoride containing apatites. Caries Res. 1983;17:419–29.

    Article  CAS  Google Scholar 

  70. LeGeros RZ, Trautz OR, LeGeros JP, Klein E, Schirra WP. Apatite crystallites: effects of carbonate on morphology. Science. 1967;155(3768):1409–11.

    Article  CAS  Google Scholar 

  71. Legoux F, Bellet D, Daviaud C, El Mor Y, et al. Microbial metabolites control the thymic development of mucosal-associated invariant cells. Science. 2019;366(6464):494–9.

    Article  CAS  Google Scholar 

  72. Lenton S, Nylander T, Texeira SCM, Holt C. A review of the biology of calcium phosphate sequestration with special reference to milk. Dairy Sci Technol. 2015;95:3–14.

    Article  CAS  Google Scholar 

  73. Li G, Xie LS, Nichols RG, Tian Y, Li L, Patel D, Ma Y, Brocker CN, Yan T, Krausz KW, Xiang R, Gavrilova O, Patterson AD, Gonzalez FJ. Intermittent fasting promotes white adipose tissue browning and decreases obesity by shaping the gut microbiota. Cell Metab. 2017;26(4):672–85. https://doi.org/10.1016/j.cmet.2017.08.019.

    Article  CAS  Google Scholar 

  74. Liou SC, Chen SY, Lee HY, Bow JS. Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials. 2004;25(2):189–96.

    Article  CAS  Google Scholar 

  75. Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C. Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell. 1992;24(5):667–79.

    Article  CAS  Google Scholar 

  76. Lu QY, Summanen PH, Lee RP, Huang J, Henning SM, Heber D, Finegold SM, Li Z. Prebiotic potential and chemical composition of seven culinary spice extracts. J Food Sci. 2017;82(8):1807–13.

    Article  CAS  Google Scholar 

  77. Martinez AW, Phillips ST, Whitesides G, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2010;82(1):3–10.

    Article  CAS  Google Scholar 

  78. Meyers MA, Chen PY, Lin AYM, Seki Y. Biological materials: structure and mechanical properties. Prog Mater Sci. 2008:1–206.

    Google Scholar 

  79. Midura RJ, Wang A, Lovitch D, Law D, Powell K, Gorski JP. Bone acidic glycoprotein-75 delineates the extracellular sites of future bone sialoprotein accumulation and apatite nucleation in osteoblastic cultures. J Biol Chem. 2004;279(24):25464–73.

    Article  CAS  Google Scholar 

  80. Mouries LP, Almeida MJ, Milet C, Berland S, Lopez E. Bioactivity of nacre water soluble matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol. 2002;132(1):217–29.

    Article  Google Scholar 

  81. Muller-Mai C, Voight C, De Almeida Reis SR, Herbst H, Gross UM. Substitution of natural coral by cortical bone and bone marrow in the rat femur. J Mater Sci Mater Med. 1996;7:479–88.

    Article  Google Scholar 

  82. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. Tough, bio-inspired hybrid materials. Science. 2008;322(5907):1516–20.

    Article  CAS  Google Scholar 

  83. Newnham R. Smart, very smart, and intelligent materials. MRS Bull. 1993;18(4):24–6. https://doi.org/10.1557/S0883769400037313.

    Article  Google Scholar 

  84. Odier A. Memoire sur la composition chimique des parties cornees des Insectes [Thesis on the chemical composition of the horny parts of insects]. Mem. Soc. Hist. Paris. 1823; 1:29-42.

    Google Scholar 

  85. Oh J, Unutmaz D. Immune cells for microbiota surveillance. Science. 2019;366(6464):419–20.

    Article  CAS  Google Scholar 

  86. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14:213–21. https://doi.org/10.1038/nm1684.

    Article  CAS  Google Scholar 

  87. Palmer KH. Are you ready to swallow a pill full of poop? 2016.; Retrieved from www.wired.com/2016/11/microbiome-therapy-making-fecal-transplants-better

  88. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by Bone and Enamel. Chem Rev. 2008;108(11):4754–83.

    Article  CAS  Google Scholar 

  89. Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-James E, van der Houwen JAM, Silva MJ. Lack of OH in nanocrystalline apatite as a function of degree of atomic order: implications for bone and biomaterials. Biomaterials. 2004;25(2):229–38.

    Article  CAS  Google Scholar 

  90. Petroski H. The pencil: a history of design and circumstance. New York: Alfred A Knopf, Inc; 1989.

    Google Scholar 

  91. Pradhan SK, Holopainen JK, Weisell J, Helvi H-TH. Human urine and wood ash as plant nutrients for red beet (Beta vulgaris) cultivation: impacts on yield quality. J Agric Food Chem. 2010;58(3):2034–9.

    Article  CAS  Google Scholar 

  92. Qin J, Li R, Raes J, Arumugam M, et al. A human gut microbial gene catalogue established by metagenomics sequencing. Nature. 2010;464:59–65.

    Article  CAS  Google Scholar 

  93. Reddi AH. Cell biology and biochemistry of endochondral bone development. Coll Relat Res. 1981;1:209–26.

    Article  CAS  Google Scholar 

  94. Reddi AH. Morphogenesis and tissue engineering of bone and cartilage: inductive signals, stem cells, and biomimetic biomaterials. Tissue Eng. 2000;6(4):351–9.

    Article  CAS  Google Scholar 

  95. Reddi AH, Anderson WA. Collagenous bone matrix-induced endochondral hemopoiesis. J Cell Biol. 1976;69:557–72.

    Article  CAS  Google Scholar 

  96. Reddi AH, Huggins CB. Biochemical sequences in the transformation of normal fibroblasts in adolescent rats. Proc Natl Acad Sci U S A. 1974a;69:1601–5.

    Article  Google Scholar 

  97. Reddi AH, Huggins CB. Cyclic electrochemical inactivation and restoration of competence of bone matrix to transform fibroblasts. Proc Natl Acad Sci USA. 1974b;71(5):1648–52.

    Article  CAS  Google Scholar 

  98. Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol. 1992;14(3):170–2.

    Article  CAS  Google Scholar 

  99. Ronan L, Pienaar R, Williams G, Bullmore E, Crow TJ, Roberts N, Jones PB, Suckling J, and Fletcher PC. Intrinsic curvature: A marker of millmeter-scale tangential cortico-cortical connectivity? Inter. J. Neur. Sys. 2011; 21(5):351-366.

    Google Scholar 

  100. Rubio R, Jofre A, Martin B, Aymerich T, Garriga M. Characterization of lactic acid bacteria isolated from infant faeces as potential probiotic starter cultures for fermented sausages. Food Microbiol. 2014;38:303–11.

    Article  CAS  Google Scholar 

  101. Rujitanapanawich S, Kumpapan P, Wanjanoi P. Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia. 2014;56:112–7.

    Article  CAS  Google Scholar 

  102. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4(8):743–65.

    Article  CAS  Google Scholar 

  103. Sampath TK, Reddi AH. Dissociative extraction and reconstitution of extracellular matrix components involved in local bone differentiation. Proc Natl Acad Sci U S A. 1981;78(12):7599–603.

    Article  CAS  Google Scholar 

  104. Sanders J, Beichman A, Roman J, Scott JJ, Emerson D, McCarthy JJ, Girguis PR. Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nat Commun. 2015;6:8285.

    Article  CAS  Google Scholar 

  105. Sarikaya M, Liu J, Aksay IA. Nacre: properties, crystallography, morphology and formation. In: Sarikaya M, Aksay IA, editors. Biomimetcs: design and processing of materials. New York: American Institute of Physics; 1995.

    Google Scholar 

  106. Scott K, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on gut microbiota. Pharmacol Res. 2013;69(1):52–60.

    Article  CAS  Google Scholar 

  107. Shen L, Liu L, Ji HF. Regulative effects of curcumin spice administration on gut microbiome and its pharmacological implications. Food Nutr Res. 2017;61(1361780) https://doi.org/10.1080/16546628.2017.1361780.

  108. Silva YP, Bernardi A, Frozza RL. The role of short chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol. 2020; https://doi.org/10.3389/fen-do.2020.00025.

  109. Silve C, Lopez E, Vidal B, Smith DC, Camprasse S, Camprasse G, Couly G. Nacre initiates biomineralization by human osteoblasts maintained in vitro. Calcif Tissue Int. 1992;51(5):363–9.

    Article  CAS  Google Scholar 

  110. Sinclair U. The jungle. New York: Doubleday; 1906.

    Google Scholar 

  111. Sonnenberg JL, Sonnenberg ED. Vulnerability of the industrialized microbiota. Science. 2019;366(6464):444.

    Google Scholar 

  112. Sun J, Bhushan B. Hierarchichal structure and properties of nacre: a review. RSC Adv. 2012;2:7617–32.

    Article  CAS  Google Scholar 

  113. Sunkara T, Rawla P, Ofosu A, Gaduputi V. Fecal microbiota transplant – a new frontier in inflammatory bowel disease. J Inflamm Res (JIR). 2018;11:321–8.

    Article  CAS  Google Scholar 

  114. Takahashi T. Atlas of the Human Body. Collins Reference, Scranton PA, 1994.

    Google Scholar 

  115. Tallinen T, Chung J, Rousseau F, et al. On the growth and form of cortical convolutions. Nat Phys. 2016;12:588–93. https://doi.org/10.1038/nphys3632.

    Article  CAS  Google Scholar 

  116. Taur Y, Coyte K, Schluter J, Robilotti E, et al. Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med. 2018;10:460., eaap9489. https://doi.org/10.1126/scitranslmed.aap9489.

    Article  CAS  Google Scholar 

  117. Teitelbaum S. Bone resorption by osteoclasts. Science. 2000;289:1504–8.

    Article  CAS  Google Scholar 

  118. Thomas MR. Salicylic acid and related compounds. In: Othmer K, editor. Encyclopedia of chemical technology; 2006. https://doi.org/10.1002/0471238961.1901120920081513.a01.pub2.

    Chapter  Google Scholar 

  119. Thompson DW. On growth and form. Cambridge: Cambridge University Press; 1917.

    Book  Google Scholar 

  120. Tinney M, Hammond A. The secret life of the pencil: great creatives and their pencils. London: Laurence King Publishing; 2017.

    Google Scholar 

  121. Tucker LA. Milk fat intake and telomere length in U.S. women and men: the role of the milk fat fraction. Oxidative Med Cell Longev. 2019;2019(2019):1574021., 12 pages. https://doi.org/10.1155/2019/1574021.

    Article  CAS  Google Scholar 

  122. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomics analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14. https://doi.org/10.1126/scitranslmed.3000322.

    Article  CAS  Google Scholar 

  123. University of South Australia. Curcumin is the spice of life when delivered via tiny nanoparticles: treatment for Alzheimer’s and genital herpes. ScienceDaily. 2020; Retrieved 18 Mar 2020 from www.sciencedaily.com/releases/2020/03/200305132144.htm

  124. University of Western Ontario. ‘Ridiculously healthy’ elderly have the same gut microbiome as healthy 30-year-olds. ScienceDaily. 2017, October 11; Retrieved 18 Mar 2020 from www.sciencedaily.com/releases/2017/10/171011123728.htm

  125. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM. The bone induction principle. Clin Orthop Relat Res. 1967;53:243–83.

    Article  CAS  Google Scholar 

  126. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:j2179.

    Article  Google Scholar 

  127. Van de Wouw M, Boehme M, Lyte JM, Wiley N, et al. Short chain fatty acids: microbial metabolites that alleviate stress induced brain-gut axis alterations. J Psychol. 2018;596(20) https://doi.org/10.1113/jp276431.

  128. Varner VD, Voronov DA, and Taber LA. Mechanics of head fold development: Investigating tissue-level forces during early development. Development.

    Google Scholar 

  129. Venkatachalam P, Geetha N, Sangeetha P, Thulaseedharan. Natural rubber producing plants: an overview. Afr J Biotechnol. 2013;12(12):1297–310.

    Google Scholar 

  130. Vincent JF. Arthropod cuticle: a natural composite shell system. Compos Part A. 2002;33:1311–5.

    Article  Google Scholar 

  131. Vitali D, Bagri P, Wessels JM, Arora M, Ganugula R, Parikh A, Mandur T, Felker A, Garg S, Kumar MNVR, Kaushic C. Curcumin can decrease tissue inflammation and the severity of HSV-2 infection in the female reproductive mucosa. Int J Mol Sci. 2020;21(1):337. https://doi.org/10.3390/ijms21010337.

    Article  CAS  Google Scholar 

  132. Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials. mBio. 2015;6(6):e01697–15. https://doi.org/10.1128/mBio.01697-15.

    Article  CAS  Google Scholar 

  133. Webster TJ, Seigel RW, Bizios R. Biomaterials. Osteoblst adhesion on nanophase ceramics”. 1999;20:1221–7.

    Google Scholar 

  134. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28(1):271–98.

    Article  CAS  Google Scholar 

  135. Weiss IM, Gohring W, Fritz M, Mann K. Perlustrin, a Haliotis laevigata (abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem Biophys Res Commun. 2001;285(2):244–9.

    Article  CAS  Google Scholar 

  136. Wendel M, Sommarin Y, Heinegard D. Bone matrix proteins: isolation and characterization of a novel cell-binding keratan sulfate proteoglycan (osteoadherin) from bovine bone. J Cell Biol. 1998;141(3):839–47.

    Article  CAS  Google Scholar 

  137. WestBroek P, Marin F. A marriage of bone and nacre. Nature. 1998;392:861–2.

    Article  CAS  Google Scholar 

  138. White EW, Weber JN, Roy DM, Owen EL, Chiroff RT, White RA. Replamineform porous biomaterials for hard tissue implant applications. J Biomed Mater Res. 1975;9(4):23–7.

    Article  CAS  Google Scholar 

  139. Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis AS. The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng C. 2002;19:263–9.

    Article  Google Scholar 

  140. Wopenka B, Pasteris JD. A mineralogical perspective on the apatite in bone. Mater Sci Eng C. 2005;25:97–104.

    Article  CAS  Google Scholar 

  141. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun. 2000;276:461–5. https://doi.org/10.1006/bbrc.2000.3503.

    Article  CAS  Google Scholar 

  142. Yang PJ, Pham J, Choo J, David L, Hu DL. Urination time does not change with body size. PNAS, 201402289. 2014; https://doi.org/10.1073/pnas.1402289111.

  143. Yang Y, Wang J, Xia M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci Total Environ. 2020;708:135233.

    Article  CAS  Google Scholar 

  144. Yeager A. How exercise reprograms the brain. 2018.; Retrieved from https://www.the-scientist.com/features/this-is-your-brain-on-exercise-64934.

  145. Zimmer K.. A new role for platelets: boosting neurogenesis after exercise, (The scientist.com). 2019; Retrieved from https://www.the-scientist.com/news-opinion/a-new-role-for-platelets%2D%2Dboosting-neurogenesis-after-exercise%2D%2D65630.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otto C. Wilson Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wilson, O.C. (2021). Biobased Materials for Medical Applications. In: Narayan, R. (eds) Biomedical Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-49206-9_4

Download citation

Publish with us

Policies and ethics