Skip to main content

Dendritic Cells in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1273))

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells (APCs) of the immune system. They capture foreign antigens and can present them to lymphocytes, that is, T cells and B cells, to activate them. DCs are the most potent of all immune cells at inducing the adaptive immune system. Thus, the presence of DCs at the anatomical site of the immune challenge is imperative for the immune system to mount an effective immune response. From the anatomical site of the immune challenge, DCs cargo antigens to the draining lymph nodes, specialized immune organs where adaptive immunity is generated. DCs are heterogeneous as a type of immune cell, and various subsets of DCs have been reported and their functions described. In this chapter, we discuss various aspects of DC development and function. We further discuss how various tumor microenvironments can affect DC development, function, and migration, thus evading a strong adaptive immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banchereau J, Steinman R (1998) M. Dendritic cells and the control of immunity. [Review] [103 refs]. Nature 392:245–252

    Article  CAS  Google Scholar 

  2. Mueller DL (2010) Mechanisms maintaining peripheral tolerance. Nat Immunol 11:21–27

    Article  CAS  Google Scholar 

  3. Corthay A (2006) A three-cell model for activation of naïve T helper cells. Scand J Immunol 64:93–96

    Article  CAS  Google Scholar 

  4. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273

    Article  CAS  Google Scholar 

  5. Curtsinger JM, Mescher MF (2010) Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol 22:333–340

    Article  CAS  Google Scholar 

  6. Pulendran B (2006) Division of labor and cooperation between dendritic cells. Nat Immunol 7:699–700

    Article  CAS  Google Scholar 

  7. De Koker S et al (2017) Inflammatory monocytes regulate Th1 oriented immunity to CpG adjuvanted protein vaccines through production of IL-12. Sci Rep 7:1–14

    Article  CAS  Google Scholar 

  8. Truxova I et al (2018) Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J Immunother Cancer 6:1–13

    Article  Google Scholar 

  9. Hirooka S et al (2011) The role of circulating dendritic cells in patients with unresectable pancreatic cancer. Anticancer Res 31:3827–3834

    CAS  Google Scholar 

  10. Goc J et al (2014) Dendritic cells in tumor-associated tertiary lymphoid structures signal a th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ t cells. Cancer Res 74:705–715

    Article  CAS  Google Scholar 

  11. Lee H et al (2018) CD11c-positive dendritic cells in triple-negative breast cancer. In Vivo (Brooklyn) 32:1561–1569

    Article  CAS  Google Scholar 

  12. Worbs T, Hammerschmidt SI, Förster R (2017) Dendritic cell migration in health and disease. Nat Rev Immunol 17:30–48

    Article  CAS  Google Scholar 

  13. Liu K, Nussenzweig MC (2010) Origin and development of dendritic cells. Immunol Rev 234:45–54

    Article  CAS  Google Scholar 

  14. Alvarez D, Vollmann EH, von Andrian UH (2008) Mechanisms and consequences of dendritic cell migration. Immunity 29:325–342

    Article  CAS  Google Scholar 

  15. Ginhoux F et al (2007) Blood-derived dermal langerin + dendritic cells survey the skin in the steady state. J Exp Med 204:3133–3146

    Article  CAS  Google Scholar 

  16. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231–235

    Article  CAS  Google Scholar 

  17. Böttcher JP et al (2018) NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell172:1022–1037.e14

    Article  CAS  Google Scholar 

  18. Kamath AT et al (2000) The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 165:6762–6770

    Article  CAS  Google Scholar 

  19. Bennaceur K et al (2009) Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology 19:576–582

    Article  CAS  Google Scholar 

  20. Ishida A et al (2008) Mucin-induced apoptosis of monocyte-derived dendritic cells during maturation. Proteomics 8:3342–3349

    Article  CAS  Google Scholar 

  21. Cubillos-Ruiz JR et al (2015) ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis. Cell 161:1527–1538

    Article  CAS  Google Scholar 

  22. Xue J et al (2019) Intrinsic β-catenin signaling suppresses CD8 + T-cell infiltration in colorectal cancer. Biomed Pharmacother 115:108921

    Article  CAS  Google Scholar 

  23. O’Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C (2008) Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev 223:114–131

    Article  Google Scholar 

  24. Zitvogel L, Kroemer G (2014) CD103+ dendritic cells producing Interleukin-12 in anticancer immunosurveillance. Cancer Cell 26:591–593

    Article  CAS  Google Scholar 

  25. Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, Mantovani A (1998) IL-10 prevents the differentiation of monocytes to dendritic cells but promotes their maturation to macrophag. Eur. J. Immunol 28:359–369

    Article  CAS  Google Scholar 

  26. Mannino MH et al (2015) The paradoxical role of IL-10 in immunity and cancer. Cancer Lett 367:103–107

    Article  CAS  Google Scholar 

  27. Ito T et al (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J Exp Med 202:1213–1223

    Article  CAS  Google Scholar 

  28. Cao W et al (2009) Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J Exp Med 206:1603–1614

    Article  CAS  Google Scholar 

  29. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2:1097–1105

    Article  CAS  Google Scholar 

  30. Della Porta M et al (2005) Dendritic cells and vascular endothelial growth factor in colorectal cancer: correlations with clinicobiological findings. Oncology 68:276–284

    Article  CAS  Google Scholar 

  31. Morrison SJ et al (1996) The aging of hematopoietic stem cells. Nat Med 2(9):1011–1016.

    Google Scholar 

  32. Oyama T et al (1998) Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. J Immunol 160:1224–1232

    CAS  Google Scholar 

  33. Michielsen AJ et al (2011) Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer. PLoS One 6:e27944

    Article  CAS  Google Scholar 

  34. Krempski J et al (2011) Tumor-infiltrating programmed death receptor-1 + dendritic cells mediate immune suppression in ovarian cancer. J Immunol 186:6905–6913

    Article  CAS  Google Scholar 

  35. McDermott DF, Atkins MB (2013) PD-1 as a potential target in cancer therapy. Cancer Med 2:662–673

    Article  CAS  Google Scholar 

  36. Chiba S et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13:832–842

    Article  CAS  Google Scholar 

  37. Mildner A, Jung S (2014) Development and function of dendritic cell subsets. Immunity 40:642–656

    Article  CAS  Google Scholar 

  38. Guilliams M et al (2016) Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 45:669–684

    Article  CAS  Google Scholar 

  39. Collin M, Mcgovern N, Haniffa M (2013) Human dendritic cell subsets. Immunology 140:22–30

    Article  CAS  Google Scholar 

  40. Theisen D, Murphy K (2017) The role of cDC1s in vivo: CD8 T cell priming through cross-presentation. F1000 Res 6:98

    Article  CAS  Google Scholar 

  41. Jongbloed SL et al (2010) Human CD141 + (BDCA-3) + dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 207:1247–1260

    Article  CAS  Google Scholar 

  42. Bachem A et al (2010) Superior antigen cross-presentation and XCR1 expression define human CD11c + CD141 + cells as homologues of mouse CD8 + dendritic cells. J Exp Med 207:1273–1281

    Article  CAS  Google Scholar 

  43. Böttcher JP, Reise Sousa C (2018) The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer 4:784–792

    Article  CAS  Google Scholar 

  44. Salmon H et al (2016) Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44:924–938

    Article  CAS  Google Scholar 

  45. Meyer MA et al (2018) Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun 9:1–19

    Article  CAS  Google Scholar 

  46. Barry KC et al (2018) A natural killer–dendritic cell axis defines checkpoint therapy–responsive tumor microenvironments. Nat Med 24:1178–1191

    Article  CAS  Google Scholar 

  47. Spranger S, Dai D, Horton B, Gajewski TF (2017) Tumor-residing Batf3 dendritic cells are required for effector T Cell trafficking and adoptive T Cell therapy. Cancer Cell 31:711–723.e4

    Article  CAS  Google Scholar 

  48. Mikucki ME et al (2015) Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun 6:7458

    Article  CAS  Google Scholar 

  49. Roberts EW et al (2016) Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30:324–336

    Article  CAS  Google Scholar 

  50. Mittal D et al (2017) Interleukin-12 from CD103 + Batf3-dependent dendritic cells required for NK-cell suppression of metastasis. Cancer Immunol Res 5:1098–1108

    Article  CAS  Google Scholar 

  51. Cauwels A et al (2018) Delivering type i interferon to dendritic cells empowers tumor eradication and immune combination treatments. Cancer Res 78:463–474

    Article  CAS  Google Scholar 

  52. Cance JC, Crozat K, Dalod M, Mattiuz R (2019) Are conventional type 1 dendritic cells critical for protective antitumor immunity and how? Front Immunol 10:9

    Article  CAS  Google Scholar 

  53. Nizzoli G et al (2013) Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood 122:932–942

    Article  CAS  Google Scholar 

  54. Granot T et al (2017) Dendritic cells display subset and tissue-specific maturation dynamics over human life. Immunity 46:504–515

    Article  CAS  Google Scholar 

  55. Fu C, Jiang A (2018) Dendritic cells and CD8 T cell immunity in tumor microenvironment. Front Immunol 9:3059

    Article  CAS  Google Scholar 

  56. Borst J, Ahrends T, Bąbała N, Melief CJM, Kastenmüller W (2018) CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol 18:635–647

    Article  CAS  Google Scholar 

  57. Michea P et al (2018) Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat Immunol 19:885–897

    Article  CAS  Google Scholar 

  58. Cella M et al (1999) Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nat Med 5:919–923

    Article  CAS  Google Scholar 

  59. Ochando JC et al (2006) Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat Immunol 7:652–662

    Article  CAS  Google Scholar 

  60. Villard-truc F et al (2008) Plasmacytoid dendritic cells mediate oral tolerance. Immunity 29:464–475

    Article  CAS  Google Scholar 

  61. Chappell CP et al (2014) Targeting antigens through blood dendritic cell antigen 2 on plasmacytoid dendritic cells promotes immunologic tolerance. J Immunol 192:5789–5801

    Article  CAS  Google Scholar 

  62. Hadeiba H et al (2012) Article plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 36:438–450

    Article  CAS  Google Scholar 

  63. Kohli K, Janssen A, Förster R (2016) Plasmacytoid dendritic cells induce tolerance predominantly by cargoing antigen to lymph nodes. Eur J Immunol 46:2659–2668

    Article  CAS  Google Scholar 

  64. Musella M, Manic G, De Maria R, Vitale I, Sistigu A (2017) Type-I-interferons in infection and cancer: unanticipated dynamics with therapeutic implications. Onco Targets Ther 6:1–12

    Google Scholar 

  65. Demoulin S, Herfs M, Delvenne P, Hubert P (2013) Tumor microenvironment converts plasmacytoid dendritic cells into immunosuppressive/tolerogenic cells: insight into the molecular mechanisms. J Leukoc Biol 93:343–352

    Article  CAS  Google Scholar 

  66. Moussion C, Girard JP (2011) Dendritic cells control lymphocyte entry to lymph nodes through high endothelial venules. Nature 479:542–546

    Article  CAS  Google Scholar 

  67. Dieu-Nosjean MC, Goc J, Giraldo NA, Sautès-Fridman C, Fridman WH (2014) Tertiary lymphoid structures in cancer and beyond. Trends Immunol 35:571–580

    Article  CAS  Google Scholar 

  68. Muniz LR, Pacer ME, Lira SA, Furtado GC (2011) A critical role for dendritic cells in the formation of lymphatic vessels within tertiary lymphoid structures. J Immunol 187:828–834

    Article  CAS  Google Scholar 

  69. Martinet L et al (2013) High endothelial Venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin β–producing dendritic cells in human breast cancer. J Immunol 191:2001–2008

    Article  CAS  Google Scholar 

  70. Hiraoka N et al (2015) Intratumoral tertiary lymphoid organ is a favourable prognosticator in patients with pancreatic cancer. Br J Cancer 112:1782–1790

    Article  CAS  Google Scholar 

  71. Martinet L et al (2012) High endothelial venules (HEVs) in human melanoma lesions: Major gateways for tumor-infiltrating lymphocytes. Oncoimmunology 1:829–839

    Article  Google Scholar 

  72. Pimenta EM, Barnes BJ (2014) Role of tertiary lymphoid structures (TLS) in anti-tumor immunity: potential tumor-induced cytokines/chemokines that regulate TLS formation in epithelial-derived cancers. Cancers (Basel) 6:969–997

    Article  CAS  Google Scholar 

  73. Teillaud JL, Dieu-Nosjean MC (2017) Tertiary lymphoid structures: an anti-tumor school for adaptive immune cells and an antibody factory to fight cancer? Front Immunol 8:1–6

    Article  CAS  Google Scholar 

  74. Engelhard VH et al (2018) Immune cell infiltration and tertiary lymphoid structures as determinants of antitumor immunity. J Immunol 200:432–442

    Article  CAS  Google Scholar 

  75. Vilgelm AE, Richmond A (2019) Chemokins modulate immune surveillance in tumorigenesis, metastatsis, and response to immunotherapy. Front Immunol 10:6–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venu G. Pillarisetty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohli, K., Pillarisetty, V.G. (2020). Dendritic Cells in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1273. Springer, Cham. https://doi.org/10.1007/978-3-030-49270-0_2

Download citation

Publish with us

Policies and ethics