Skip to main content

Numerical Investigation of Supersonic Dense-Gas Boundary Layers

  • Conference paper
  • First Online:
Non-Ideal Compressible Fluid Dynamics for Propulsion and Power (NICFD 2018)

Abstract

A study of dense-gas effects on the laminar, transitional and turbulent characteristics of boundary layer flows is conducted. The laminar similarity solution shows that temperature variations are small due to the high specific heats of dense gases, leading to velocity profiles close to the incompressible ones. Nevertheless, the complex thermodynamics of the base flow has a major impact on unstable modes, which bear similarities with those obtained for a strongly cooled wall. Numerical simulations of spatially developing boundary layers yield turbulent statistics for the dense gas flow that remain closer to the incompressible regime than perfect gas ones despite the presence of strongly compressible structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Colonna, P., Casati, E., Trapp, C., Mathijssen, T., Larjola, J., Turunen-Saaresti, T., Uusitalo, A.: J. Eng. Gas Turbines Power 137(10), 100801 (2015)

    Article  Google Scholar 

  2. Thompson, P., Lambrakis, K.: J. Fluid Mech. 60(01), 187 (1973)

    Article  Google Scholar 

  3. Cramer, M., Kluwick, A.: J. Fluid Mech. 142, 9 (1984)

    Article  MathSciNet  Google Scholar 

  4. Cramer, M.: Nonlinear waves in real fluids, pp. 91–145 (1991)

    Google Scholar 

  5. Sciacovelli, L., Cinnella, P., Content, C., Grasso, F.: J. Fluid Mech. 800(1), 140 (2016)

    Article  MathSciNet  Google Scholar 

  6. Sciacovelli, L., Cinnella, P., Grasso, F.: J. Fluid Mech. 825, 515 (2017)

    Article  MathSciNet  Google Scholar 

  7. Sciacovelli, L., Cinnella, P., Gloerfelt, X.: J. Fluid Mech. 821, 153 (2017)

    Article  MathSciNet  Google Scholar 

  8. Sciacovelli, L., Cinnella, P., Gloerfelt, X.: Flow Turbul. Combust. 101(2), 295–315 (2018)

    Article  Google Scholar 

  9. Martin, J., Hou, Y.: AIChE J. 1(2), 142 (1955)

    Article  Google Scholar 

  10. Chung, T., Lee, L., Starling, K.: Ind. Eng. Chem. Fundam. 23(1), 8 (1984)

    Article  Google Scholar 

  11. Ma, Y., Zhong, X.: J. Fluid Mech. 488, 31 (2003)

    Article  MathSciNet  Google Scholar 

  12. Mack, L.: Boundary-layer linear stability theory. Technical report, California Institute of Technology - Jet Propulsion Laboratory (1984)

    Google Scholar 

  13. Bitter, N., Shepherd, J.: J. Fluid Mech. 778, 586 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chuvakhov, P., Fedorov, A.: J. Fluid Mech. 805, 188 (2016)

    Article  MathSciNet  Google Scholar 

  15. Franko, K., Lele, S.: J. Fluid Mech. 730, 491 (2013)

    Article  MathSciNet  Google Scholar 

  16. Pirozzoli, S., Bernardini, M.: J. Fluid Mech. 688, 120 (2011)

    Article  MathSciNet  Google Scholar 

  17. Wenzel, C., Selent, B., Kloker, M., Rist, U.: J. Fluid Mech. 842, 428 (2018)

    Article  MathSciNet  Google Scholar 

  18. Pirozzoli, S., Grasso, F., Gatski, T.: Phys. Fluids 16(3), 530 (2004)

    Article  Google Scholar 

  19. Martin, P.: 34th AIAA Fluid Dynamics Conference and Exhibit, p. 2337 (2004)

    Google Scholar 

  20. Schlatter, P., Örlü, R.: J. Fluid Mech. 659, 116 (2010)

    Article  Google Scholar 

  21. Spalart, P.R.: J. Fluid Mech. 187, 61 (1988)

    Article  Google Scholar 

  22. Trettel, A., Larsson, J.: Phys. Fluids 28(2), 026102 (2016)

    Article  Google Scholar 

  23. Cinnella, P., Congedo, P.: J. Fluid Mech. 580, 179 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was granted access to the HPC resources of IDRIS and TGCC under the allocation 2018-7332 made by GENCI (Grand Equipement National de Calcul Intensif). We also acknowledge TGCC for awarding us access to the Joliot-Curie supercomputer under the allocation “Grands Challenges” gch032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Sciacovelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sciacovelli, L., Passiatore, D., Gloerfelt, X., Cinnella, P., Grasso, F. (2020). Numerical Investigation of Supersonic Dense-Gas Boundary Layers. In: di Mare, F., Spinelli, A., Pini, M. (eds) Non-Ideal Compressible Fluid Dynamics for Propulsion and Power. NICFD 2018. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-49626-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49626-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49625-8

  • Online ISBN: 978-3-030-49626-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics