Skip to main content

Zonal Vegetation of the Tropical Zone with Summer Rain

  • Chapter
  • First Online:
Global Vegetation

Abstract

In the tropics with summer rain that have a pronounced dry period during the cooler season, a mosaic of trees, shrubs and grassland (savannas) generally constitutes the predominant vegetation. It is characterized by the coexistence of C4 grasses and small evergreen trees (on extremely nutrient-poor soils in Australia and South America, in particular on soils poor in phosphorus) or raingreen trees (on better soils such as in Africa). This coexistence is controlled by frequent but irregular fires of varying intensity and duration, and – only in Africa – by large herbivores. Without fire and grazing, the potential vegetation under the prevailing climatic conditions consists of raingreen or evergreen (“sclerophyllous”) broad-leaved forests, depending on the amount of annual precipitation. Such forests occur in the transition to tropical rainforests, in edaphic savannas and in regions less affected by fire or grazing, or both. The transition between savanna and forest is continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbadie, L., Gignoux, J., Le Roux, X., & Lepage, M. (Eds.). (2006). Lamto. Structure, functioning, and dynamics of a savanna ecosystem. Ecological Studies, 179, 412.

    Google Scholar 

  • Acocks, J. P. H. (1988). Veld types of South Africa (3rd ed., 146 pp). Pretoria: Botanical Research Institute.

    Google Scholar 

  • Anderson, A. N., Cook, G. D., & Williams, R. J. (Eds.). (2003). Fire in tropical savannas. The kapalga experiment (Ecological studies) (Vol. 169, 195 pp).

    Google Scholar 

  • Appezzato-da-Glória, B., Cury, G., Misaki, M. K., Rocha, R., & Hayashi, A. H. (2008). Underground systems of Asteraceae species from the Brazilian Cerrado. Journal of the Torrey Botanical Society, 135, 103–113.

    Google Scholar 

  • Assis, A. C. C., Coelho, R. M., Pinheiro, E. S., & Durigan, G. (2011). Water availability determines physiognomy gradient in an area of low-fertility soils under Cerrado vegetation. Plant Ecology, 212, 1135–1147.

    Google Scholar 

  • Augustine, D. J., & McNaughton, S. J. (2004). Regulation of shrub dynamics by native browsing ungulates on East African rangeland. Journal of Applied Ecology, 41, 45–58.

    Google Scholar 

  • Baker, J. P., & Bunyavejchewin, S. (2009). Fire behavior and fire effects across the forest landscape of continental Southeast Asia. In M. A. Cochrane (Ed.), Tropical fire ecology. Climate change, land use, and ecosystem dynamics (pp. 311–334). Chichester: Springer Praxis Books.

    Google Scholar 

  • Baruch, Z. (2005). Vegetation-environment relationships and classification of the seasonal savannas in Venezuela. Flora, 200, 49–64.

    Google Scholar 

  • Beadle, N. C. W. (1981). The vegetation of Australia (690 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Beckage, B., Platt, W. J., & Gross, L. J. (2009). Vegetation, fire, and feedbacks: A disturbance-mediated model of savannas. The American Naturalist, 174, 805–818.

    PubMed  Google Scholar 

  • Beerling, D. J., & Osborne, C. P. (2006). The origin of the savanna biome. Global Change Biology, 12, 2023–2031.

    Google Scholar 

  • Behling, H. (2002). South and Southeast Brazilian grasslands during late quaternary times: A synthesis. Palaeogeography, Palaeoclimatology and Palaeoecology, 177, 19–27.

    Google Scholar 

  • Belsky, A. J. (1990). Tree/grass ratios in East African savannas: A comparison of existing models. Journal of Biogeography, 17, 483–489.

    Google Scholar 

  • Belsky, A. J. (1994). Influences of trees on savanna productivity: Tests of shade, nutrients, and tree-grass competition. Ecology, 75, 922–932.

    Google Scholar 

  • Blasco, F. (1983). The transition from open forest to savanna in continental Southeast Asia. In F. Bourlière (Ed.), Tropical savannas (Ecosystems of the World) (Vol. 13, pp. 167–181).

    Google Scholar 

  • Bloesch, U. (2008). Thicket clumps: A characteristic feature of the Kagera savanna landscape, East Africa. Journal of Vegetation Science, 19, 31–44.

    Google Scholar 

  • Blum, W. E. H., Schad, P., & Nortcliff, S. (2018). Essentials of soil science (171 pp). Stuttgart: Borntraeger Science Publishers.

    Google Scholar 

  • Bond, W. J. (2008). What limits trees in C4-grasslands and savannas? Annual Review of Ecology, Evolution and Systematics, 39, 641–659.

    Google Scholar 

  • Bond, W. J., & Keeley, J. E. (2005). Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution, 20, 387–394.

    PubMed  Google Scholar 

  • Bond, W. J., & Midgley, J. J. (2003). The evolutionary ecology of sprouting in woody plants. International Journal of Plant Sciences, 164, 103–114.

    Google Scholar 

  • Bond, W. J., & van Wilgren, B. W. (1996). Fire and plants. London: Chapman & Hall.

    Google Scholar 

  • Bond, W. J., Woodward, F. I., & Midgley, G. F. (2005). The global distribution of ecosystems in a world without fire. New Phytologist, 165, 525–538.

    CAS  PubMed  Google Scholar 

  • Bowman, D. M. J. S., & Prior, L. D. (2005). Why do evergreen trees dominate the Australian seasonal tropics? Australian Journal of Botany, 53, 379–399.

    Google Scholar 

  • Bradstock, R. A., Williams, J. E., & Gill, A. M. (Eds.). (2002). Flammable Australia. The fire regimes and biodiversity of a continent (462 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Brooks, M. L., D’Antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., DiTomaso, J. M., Hobbs, R. J., Pellant, M., & Pyke, D. (2004). Effects of invasive alien plants on fire regimes. Bioscience, 54, 677–688.

    Google Scholar 

  • Bucci, S. J., Scholz, F. G., Goldstein, G., Meinzer, F. C., Hinojosa, J. A., Hoffmann, W. A., & Franco, A. C. (2004). Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. Tree Physiology, 24, 1119–1127.

    PubMed  Google Scholar 

  • Campbell, B. M. (Ed.). (1996). The Miombo in transition: Woodlands and welfare in Africa (266 pp). Bogor: Center for International Forestry Research (CIFOR).

    Google Scholar 

  • Castro, A. A. J. F., Martins, F. R., Tamashiro, J. Y., & Shepherd, G. J. (1999). How rich is the flora of Brazilian cerrados? Annals of the Missouri Botanical Garden, 86, 192–224.

    Google Scholar 

  • Cauldwell, A. E., & Zieger, U. (2000). A reassessment of the fire-tolerance of some miombo woody species in the Central Province, Zambia. African Journal of Ecology, 38, 138–146.

    Google Scholar 

  • Chuvieko, E., Giglio, L., & Justice, C. (2008). Global characterization of fire activity: Toward defining fire regimes from earth observation data. Global Change Biology, 14, 1488–1502.

    Google Scholar 

  • Cochrane, M. A. (Ed.). (2009). Tropical fire ecology. Climate change, land use, and ecosystem dynamics (645 pp). Chichester: Praxis Publishing.

    Google Scholar 

  • Cochrane, M. A., & Laurance, W. F. (2002). Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology, 18, 311–325.

    Google Scholar 

  • Cochrane, M. A., & Ryan, K. C. (2009). Fire and fire ecology: Concepts and principles. In M. A. Cochrane (Ed.), Tropical fire ecology. Climate change, land use, and ecosystem dynamics (pp. 25–62). Chichester: Praxis Publishing.

    Google Scholar 

  • Codron, J., Lee-Thorp, J. A., Sponheimer, M., Codron, D., Grant, R. C., & de Rutter, D. J. (2006). Elephant (Loxodonta africana) diets in Kruger National Park, South Africa: Spatial and landscape differences. Journal of Mammalogy, 87, 27–34.

    Google Scholar 

  • Codron, D., Lee-Thorp, J. A., Sponheimer, M., & Codron, J. (2007). Nutritional content of savanna plant foods: Implications for browser/grazer models of ungulate diversification. European Journal of Wildlife Research, 53, 100–111.

    Google Scholar 

  • Coetsee, C., Bond, W. J., & February, E. C. (2010). Frequent fire affects soil nitrogen and carbon in an African savanna by changing woody cover. Oecologia, 162, 1027–1034.

    PubMed  Google Scholar 

  • Cowling, R. M., Richardson, D. M., & Pierce, S. M. (Eds.). (1997). Vegetation of Southern Africa (615 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • D’Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics, 23, 63–87.

    Google Scholar 

  • Darlington, J. P. E. C. (1994). Nutrition and evolution in fungus-growing termites. In J. H. Hunt & C. A. Nalepa (Eds.), Nourishment and evolution in insect societies (pp. 105–130). Boulder, Colorado: Westview Press.

    Google Scholar 

  • de Mendonça, R. C., Felfili, J. M., Walter, B. M. T., da Silva Junior, M. V., Rezende, A. V., Filgueiras, T. S., & Nogueira, P. E. (1998). Flora vascular do cerrado. In S. M. Sano & S. P. Almeida (Eds.), Cerrado: Ambiente e Flora (pp. 289–556). Embrapa: Planaltina DF.

    Google Scholar 

  • De Souza, M. C., Bueno, P. C. P., Morellato, L. P. C., & Habermann, G. (2015). Ecological strategies of Al-accumulating and non-accumulating functional groups from the cerrado sensu stricto. Annals of Brazilian Academy of Sciences, 97, 813–823.

    Google Scholar 

  • Dezzeo, N., Chacón, N., Sanoja, E., & Picón, G. (2004). Changes in soil properties and vegetation characteristics along a forest-savanna gradient in Southern Venezuela. Forest Ecology and Management, 200, 183–193.

    Google Scholar 

  • Domec, J.-C., Scholz, F. G., Bucci, S. J., Meinzer, F. C., Goldstein, G., & Villalobos-Vega, R. (2006). Diurnal and seasonal variation in root xylem embolism in Neotropical savanna woody species: Impact on stomatal control of plant water status. Plant, Cell and Environment, 29, 26–35.

    CAS  PubMed  Google Scholar 

  • Dupont, L. M., Jahns, S., Marret, F., & Ning, S. (2000). Vegetation change in equatorial West Africa: Time-slices for the last 150 ka. Palaeogeography, Palaeoclimatology, Palaeoecology, 155, 95–122.

    Google Scholar 

  • Ehleringer, J. R., & Monson, R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology, Evolution and Systematics, 24, 411–439.

    Google Scholar 

  • Eiten, G. (1972). The cerrado vegetation of Brazil. Botanical Review, 38, 201–341.

    Google Scholar 

  • Ellenberg, H. (1975). Vegetationsstufen in perhumiden bis perariden Bereichen der tropischen Anden. Phytocoenologia, 2, 368–387.

    Google Scholar 

  • Ellis, R. P., Vogel, J. C., & Fuls, A. (1980). Photosynthetic pathways and the geographical distribution of grasses in South West Africa/Namibia. South African Journal, 76, 307–314.

    Google Scholar 

  • February, E. C., & Higgins, S. I. (2010). The distribution of tree and grass roots in savannas in relation to soil nitrogen and water. South African Journal of Botany, 76, 517–523.

    Google Scholar 

  • Fensham, R. J., Fairfax, R. J., Butler, D. W., & Bowman, D. M. J. S. (2003). Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. Journal of Biogeography, 30, 1405–1414.

    Google Scholar 

  • Ferri, M. (1944). Transpiração de plantas permanentes dos cerrados. Boletim da Faculdade de Filosofia, Ciências e Letras USP 41. Botânica, 4, 159–224.

    Google Scholar 

  • Fölster, H., Dezzea, N., & Priess, J. A. (2001). Soil-vegetation relationship in base-deficient premontane moist forest-savanna mosaics of the Venezuelan Guayana. Geoderma, 104, 95–113.

    Google Scholar 

  • Foxcroft, L. C., Richardson, D. M., Rejmánek, M., & Pyšek, P. (2010). Alien plant invasions in tropical and sub-tropical savannas: Patterns, processes and prospects. Biological Invasions, 12, 3913–3933.

    Google Scholar 

  • Frost, P. G. H., & Robertson, F. (1987). The ecological effects of fire in savannas. In B. H. Walker (Ed.), Determinants of tropical savannas (International Union of Biological Sciences Monograph Series no. 3) (pp. 93–140). Paris: IRL Press.

    Google Scholar 

  • Furley, P. A., Rees, R. M., Ryan, C. M., & Saiz, G. (2008). Savanna burning and the assessment of long-term fire experiments with particular reference to Zimbabwe. Progress in Physical Geography, 32, 611–634.

    Google Scholar 

  • Garrity, D. P., Soekardi, M., Van Noordwijk, M., De La Cruz, R., Pathak, B. S., Gunasena, H. P. M., Van So, N., Hujun, G., & Majid, N. M. (1997). The Imperata grassland of tropical Asia: Area, distribution, and typology. Agroforestry Systems, 36, 3–29.

    Google Scholar 

  • Gignoux, J., Mordelet, P., & Menaut, J. C. (2005). Biomass cycle and primary production. In L. Abbadie, J. Gignoux, X. Le Roux, & M. Lepage (Eds.), Lamto: Structure, functioning and dynamics of a savanna ecosystem (Ecological studies) (Vol. 179, pp. 115–137).

    Google Scholar 

  • Gillison, A. N. (1983). Tropical savannas of Australia and the Southwest Pacific. In F. Bourlière (Ed.), Tropical savannas (Ecosystems of the world) (Vol. 13, pp. 183–243).

    Google Scholar 

  • Gillison, A. N. (1994). Woodlands. In R. H. Groves (Ed.), Australian vegetation (2nd ed., pp. 227–255). Cambridge: Cambridge University Press.

    Google Scholar 

  • Goldammer, J. G. (1993). Feuer in Waldökosystemen der Tropen und Subtropen (251 pp). Basel: Birkhäuser.

    Google Scholar 

  • Goldstein, G., Meinzer, F. C., Bucci, S. J., Scholz, F. G., Franco, A. C., & Hoffmann, W. A. (2008). Water economy of Neotropical savanna trees: Six paradigms revisited. Tree Physiology, 28, 395–404.

    PubMed  Google Scholar 

  • Gomes de Moraes, M., Machado de Carvalho, M. A., Franco, A. C., Pollock, C. J., & Figueiredo-Ribeiro, R. C. L. (2016). Fire and drought: Soluble carbohydrate storage and survival mechanisms in herbaceous plants from the cerrado. Bioscience, 66, 107–117.

    Google Scholar 

  • Gottsberger, G., & Silberbauer-Gottsberger, I. (2006). Life in the Cerrado (Origin, structure, dynamics and plant use) (Vol. I, 277 pp). Ulm: Reta.

    Google Scholar 

  • Gowender, N., Trollope, W. S. W., & Van Wilgen, B. W. (2006). The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology, 43, 748–758.

    Google Scholar 

  • Hartnett, D. C., Potgieter, A. F., & Wilson, G. W. T. (2005). Fire effects on mycorrhizal symbiosis and root system architecture in Southern African savanna grasses. African Journal of Ecology, 42, 328–337.

    Google Scholar 

  • Heringer, E. P., Barroso, G. M., Rizzo, G. M., & Rizzini, C. T. (1977). A flora do cerrado. In M. G. Ferri (Ed.), IV. Simpósio sobre o Cerrado (pp. 211–232). Belo Horizonte: Livraria Itatiaia Editora.

    Google Scholar 

  • Higgins, S. I., Bond, W. J., & Trollope, W. S. W. (2000). Fire, resprouting and variability: A recipe for tree-grass coexistence in savanna. Journal of Ecology, 88, 213–229.

    Google Scholar 

  • Higgins, S. J., Bond, W. J., February, E. C., Bronn, A., Euston-Brown, D. I. W., Enslin, B., Govender, N., Rademan, L., O’Regan, S., Potgieter, A. L. F., Scheiter, S., Sowry, R., Trollope, L., & Trollope, W. S. W. (2007). Effects of four decades of fire manipulation on woody vegetation structure in savanna. Ecology, 88, 1119–1125.

    PubMed  Google Scholar 

  • Hoffmann, W. A., & Franco, A. C. (2003). Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. Journal of Ecology, 91, 475–484.

    Google Scholar 

  • Hoffmann, W. A., Orthen, B., & Franco, A. C. (2004). Constraints to seedling success of savanna and forest trees across the savanna-forest boundary. Oecologia, 140, 252–260.

    PubMed  Google Scholar 

  • Holbrook, N. M., Whitbeck, J. L., & Mooney, H. A. (1995). Drought responses of neotropical dry forest trees. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonal dry tropical forests (pp. 243–276). Cambridge: Cambridge University Press.

    Google Scholar 

  • Homewood, K., & Brockington, D. (1999). Biodiversity, conservation and development in Mkomazi game reserve, Tanzania. Global Ecology and Biogeography, 8, 301–313.

    Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton: Princeton University Press.

    Google Scholar 

  • Huber, O. (1987). Neotropical savannas: Their flora and vegetation. Trends in Ecology & Evolution, 2, 67–71.

    CAS  Google Scholar 

  • Huber, O. (1995). Vegetation. In P. E. Berry, B. K. Holst, & K. Yatskievych (Eds.), Flora of the Venezuelan Guayana (Introduction) (Vol. I, pp. 97–160). St. Louis/Portland, OR: Missouri Botanical Garden/Timber Press.

    Google Scholar 

  • Huston, M. A. (1979). A general hypothesis of species diversity. The American Naturalist, 113, 81–101.

    Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatístico) (2006). Censo agropecuária. www.ibge.gov.br.

  • Jackson, P. C., Cavelier, J., Goldstein, G., Meinzer, F. C., & Holbrook, N. M. (1995). Partitioning of water resources among plants of a lowland tropical forest. Oecologia, 101, 197–203.

    CAS  PubMed  Google Scholar 

  • Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643.

    Google Scholar 

  • Janssen, A. (1986). Flora und Vegetation der Savannen von Humaitá und ihre Standortbedingungen. Dissertationes Botanicae, 93, 321.

    Google Scholar 

  • Jeltsch, F., Weber, G. E., & Grimm, V. (2000). Ecological buffering mechanisms in savannas: A unifying theory of long-term tree-grass coexistence. Plant Ecology, 151, 161–171.

    Google Scholar 

  • Johnson, R. W., & Tothill, J. C. (1985). Definition and broad geographic outline of savanna lands. In J. C. Tothill & J. J. Mott (Eds.), Ecology and management of the World’s savannas (pp. 1–13). Australian Academy of Sciences: Canberra.

    Google Scholar 

  • Joseph, G. S., Seymour, C. L., Cumming, G. S., Cumming, D. H. M., & Mahlangu, Z. (2013). Termite mounds as islands: Woody plant assemblages relative to termitarium size and soil properties. Journal of Vegetation Science, 24, 702–711.

    Google Scholar 

  • Juntheikki, M. R. (1996). Comparison of tannin-binding proteins in saliva of Scandinavian and North American moose (Alces alces). Biochemistry, Systematics and Ecology, 24, 595–601.

    CAS  Google Scholar 

  • Kawollek, W., & Falk, H. (2005). Bibelpflanzen (130 pp). E. Ulmer, Stuttgart: Kennen und kultivieren.

    Google Scholar 

  • Keeley, J. E., & Rundel, P. W. (2005). Fire and the Miocene expansion of C4 grasslands. Ecology Letters, 8, 683–690.

    Google Scholar 

  • Kellman, M., & Tackaberry, R. (1997). Tropical environments. The functioning and management of tropical ecosystems (380 pp). London/New York: Routledge.

    Google Scholar 

  • Kennedy, A. D., & Potgieter, A. L. F. (2003). Fire season affects size and architecture of Colophospermum mopane in Southern African savannas. Plant Ecology, 167, 179–192.

    Google Scholar 

  • Klink, C. A., & Moreira, A. G. (2002). Past and current human occupation, and land use. In P. S. Oliveira & R. J. Marquis (Eds.), The cerrados of Brazil. Ecology and natural history of a neotropical savanna (pp. 69–88). New York: Columbia University Press.

    Google Scholar 

  • Klötzli, F. (1980). Analysis of species oscillations in tropical grasslands in Tanzania due to management and weather conditions. Phytocoenologia, 8, 13–33.

    Google Scholar 

  • Klötzli, F., Dietl, W., Marti, K., Schubiger-Bosshard, C., & Walther, G.-R. (2010). Vegetation Europas. Das Offenland im vegetationskundlich-ökologischen Überblick unter besonderer Berücksichtigung der Schweiz. (1190 pp). Hep, Bern: Schweiz.

    Google Scholar 

  • Knapp, R. (1973). Die Vegetation von Afrika (626 pp). Stuttgart: G. Fischer.

    Google Scholar 

  • Kotanen, P. M., & Rosenthal, J. P. (2000). Tolerating herbivory: Does the plant care if the herbivore has a backbone? Evolutionary Ecology, 14, 537–549.

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology (4th ed., 513 pp). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Le Houérou, H. N. (1989). The grazing land ecosystem of the African Sahel. Ecological Studies, 75, 282 pp.

    Google Scholar 

  • Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A., & Bond, W. J. (2011). Deciphering the distribution of the savanna biome. New Phytologist, 191, 197–209.

    PubMed  Google Scholar 

  • Lieberei, R., & Reisdorff, C. (2007). Nutzpflanzenkunde (7th ed., 476 pp). Stuttgart/New York: Georg Thieme.

    Google Scholar 

  • Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate diagram world atlas (CD-ROM). Leiden: Backhuys Publ.

    Google Scholar 

  • Louppe, D., Ouattara, N., & Coulibaly, A. (1995). The effect of brush fires on vegetation: The Aubreville fire plots after 60 years. Commonwealth Forest Review, 74, 288–292.

    Google Scholar 

  • Ludwig, F., de Kron, H., Prins, H. H. T., & Berendse, F. (2001). Effects of nutrients and shade on tree-grass interactions in an East African savanna. Journal of Vegetation Science, 12, 579–588.

    Google Scholar 

  • Lüttge, U. (2008). Physiological ecology of tropical plants (2nd ed., 458 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

  • MacDonald, G. E. (2004). Cogongrass (Imperata cylindrical) – Biology, ecology, and management. Critical Reviews in Plant Sciences, 23, 367–380.

    Google Scholar 

  • Matteucci, S. (1987). The vegetation of Falcón State, Venezuela. Vegetation, 70, 67–91.

    Google Scholar 

  • Maurin, O., Davies, T. J., Burrows, J. E., Daru, B. H., Yessoufou, K., Muasya, A. M., Van der Bank, M., & Bond, W. J. (2014). Savanna fire and the origins of the “underground forests” of Africa. New Phytologist, 204, 201–214.

    PubMed  Google Scholar 

  • Mayle, F. E., Beerling, D. J., Gosling, W. D., & Bush, M. B. (2004). Responses of Amazonian ecosystems to climatic and atmospheric carbon dioxide changes since the last glacial maximum. Philosophical Transactions of the Royal Society, London, Ser B Biological Sciences, 359, 499–514.

    CAS  Google Scholar 

  • Medina, E. (1995). Diversity of life forms of higher plants in neotropical dry forests. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonal dry tropical forests (pp. 221–242). Cambridge: Cambridge University Press.

    Google Scholar 

  • Medina, E., & Silva, J. F. (1990). Savannas of Northern South America: A steady state regulated by water-fire interactions on a background of low nutrient availability. Journal of Biogeography, 17, 403–413.

    Google Scholar 

  • Miles, L., Newton, A. C., DeFries, R. S., Ravilious, C., May, I., Blyth, S., Kapos, V., & Gordon, J. E. (2006). A global overview of the conservation status of tropical dry forests. Journal of Biogeography, 33, 491–505.

    Google Scholar 

  • Misra, R. (1983). Indian savannas. In F. Bourlière (Ed.), Tropical savannas (Ecosystems of the world) (Vol. 13, pp. 151–166).

    Google Scholar 

  • Moe, S. R., Mobaek, R., & Narmo, A. K. (2009). Mound building termites contribute to savanna vegetation heterogeneity. Plant Ecology, 202, 31–40.

    Google Scholar 

  • Morais, H. C., Diniz, I. R., & Baumgarten, L. (1995). Padrões de produção de folhas e sua utilização por larvas de Lepidoptera em um Cerrado de Brasilia. Revista Brasileira de Botânica, 18, 163–170.

    Google Scholar 

  • Mordelet, P., Menaut, J.-C., & Mariotti, A. (1997). Tree and grass rooting patterns in an African humid savanna. Journal of Vegetation Science, 8, 65–70.

    Google Scholar 

  • Moreira, A. G. (2000). Effects of fire protection on savanna structure in Central Brazil. Journal of Biogeography, 27, 1021–1029.

    Google Scholar 

  • Moreira, M. Z., Scholz, F. G., Bucci, S. J., Sternberg, L. S., Goldstein, G., Meinzer, F. C., & Franco, A. C. (2003). Hydraulic lift in a neotropical savanna. Functional Ecology, 17, 573–581.

    Google Scholar 

  • Mouillot, F., & Field, C. B. (2005). Fire history and the global carbon budget: a 1×1 fire history reconstruction for the 20th century. Global Change Biology, 11, 398–420.

    Google Scholar 

  • Mueller-Dombois, D., & Fosberg, F. L. (1998). Vegetation of the tropical Pacific Islands (733 pp). New York: Springer.

    Google Scholar 

  • Müller-Hohenstein, K. (1993). Auf dem Weg zu einem neuen Verständnis von Desertifikation - Überlegungen aus der Sicht einer praxisorientierten Geobotanik. Phytocoenologia, 23, 499–518.

    Google Scholar 

  • Oliveira, P. S., & Marquis, R. J. (Eds.). (2002). The Cerrados of Brazil (398 pp). New York: Columbia University Press.

    Google Scholar 

  • Oliveira-Filho, A. T., & Ratter, J. A. (2002). Vegetation physiognomies and woody flora of the cerrado biome. In P. S. Oliveira & R. J. Marquis (Eds.), The Cerrados of Brazil (pp. 91–120). New York: Columbia University Press.

    Google Scholar 

  • Otieno, D. O., K’Otuto, G. O., Jákli, B., Schröttle, P., Maina, J. N., Jung, E., & Onyango, J. C. (2011). Spatial heterogeneity in ecosystem structure and productivity in a moist Kenyan savanna. Plant Ecology, 212, 769–783.

    Google Scholar 

  • Owen-Smith, N. (1987). Pleistocene extinctions: The pivotal role of megaherbivores. Paleobiology, 13(3), 351–362.

    Google Scholar 

  • Owen-Smith, R. N. (1992). Megaherbivores. The influence of very large body size on ecology (388 pp). Cambridge: Cambridge Studies in Ecology.

    Google Scholar 

  • O’Connor, T. G., Goodman, P. S., & Clegg, B. (2007). A functional hypotheses of the threat of local extirpation of woody plant species by elephant in Africa. Biological Conservation, 136, 329–345.

    Google Scholar 

  • Pass, G. J., Mclean, S., Stupans, I., & Davies, N. W. (2002). Microsomal metabolism and enzyme kinetics of the terpene p-cymene in the common brushtail possum (Trichosurus vulpecula), koala (Phascolarctus cinereus) and rat. Xenobiotica, 32, 383–397.

    CAS  PubMed  Google Scholar 

  • Pemadasa, M. A. (1990). Tropical grasslands of Sri Lanka and India. Journal of Biogeography, 17, 395–400.

    Google Scholar 

  • Picket, S. T. A., & Thompson, J. N. (1978). Patch dynamics and the design of nature reserves. Biological Conservation, 13, 27–37.

    Google Scholar 

  • Pomeroy, D. E., Bagine, R. K., & Darlington, J. P. E. C. (1991). Fungus-growing termites in East African savannas. In F. I. B. Kayanja & E. L. Edroma (Eds.), African wild research and management (pp. 41–50). Kampala, UG: International Council of Scientific Unions.

    Google Scholar 

  • Ramia, M. (1974). Estudio ecológico del modulo experimental de Mantecal. Boletín Sociedad Venezolana de Ciencias Naturales, 3, 117–142.

    Google Scholar 

  • Ratter, J. A. (1992). Transitions between cerrado and forest vegetation in Brazil. In P. A. Furley, J. Proctor, & J. A. Ratter (Eds.), Nature and dynamics of forest-savanna boundaries (pp. 417–429). London: Chapman & Hall.

    Google Scholar 

  • Raunkiaer, C. (1910). Statistik der Lebensformen als Grundlage für die biologische Pflanzengeographie. Beihefte Biologisches Centralblatt, 27 II, 171–206d.

    Google Scholar 

  • Rawitscher, F. (1948). The water economy of the vegetation of the Campos Cerrados in Southern Brazil. Journal of Ecology, 36, 237–268.

    Google Scholar 

  • Rawitscher, F., & Rachid, M. (1946). Troncos subterrâneos de plantas brasileiros. Annais Academia Brasileira de Ciencias, 18, 261–280.

    Google Scholar 

  • Richards, J. H., & Caldwell, M. M. (1987). Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia, 73, 486–489.

    CAS  PubMed  Google Scholar 

  • Rooke, T., Danell, K., Bergström, R., Skarpe, C., & Hjältén, J. (2004). Defense traits of savanna trees – The role of shoot exposure to browsers. Oikos, 107, 161–171.

    Google Scholar 

  • Rossiter-Rachor, N. A., Setterfield, S. A., Douglas, M. M., Hutley, L. B., Cook, G. D., & Schmidt, S. (2009). Invasiv Andropogon gayanus (Gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna. Ecological Applications, 19, 1546–1560.

    CAS  PubMed  Google Scholar 

  • Rowe, J. S. (1983). Concepts of fire effects on plant individuals and species. In R. W. Wein & D. A. MacLean (Eds.), The role of fire in northern circumpolar ecosystems (pp. 135–154). Chichester: Wiley.

    Google Scholar 

  • Rull, V. (2007). Holocene global warming and the origin of the Neotropical Gran Sabana in the Venezuelan Guayana. Journal of Biogeography, 34, 279–288.

    Google Scholar 

  • Rull, V. (2009). New palaeoecological evidence for the potential role of fire in the Gran Sabana, Venezuelan Guayana, and implications for early human occupation. Vegetation History and Archaeobotany, 18, 219–224.

    Google Scholar 

  • Rundel, P. W., & Boonpragop, K. (1995). Dry forest ecosystems of Thailand. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally dry tropical forests (pp. 93–123). New York: Cambridge University Press.

    Google Scholar 

  • Russell-Smith, J., Stanton, P. J., Edwards, A. C., & Whitehead, P. J. (2004a). Rain forest invasion of eucalypt-donated woodland savanna, Iron range, North-Eastern Australia: I. Successional processes. Journal of Biogeography, 31, 1293–1303.

    Google Scholar 

  • Russell-Smith, J., Stanton, P. J., Edwards, A. C., & Whitehead, P. J. (2004b). Rain forest invasion of eucalypt-donated woodland savanna, Iron range, North-Eastern Australia: II. Rates of landscape change. Journal of Biogeography, 31, 1305–1316.

    Google Scholar 

  • Ryan, C. M., & Williams, M. (2011). How does fire intensity and frequency affect miombo woodland tree population and biomass? Ecological Applications, 21, 48–60.

    PubMed  Google Scholar 

  • Sankaran, M., Ratnam, J., & Hanan, N. P. (2004). Tree-grass coexistence in savannas revisited – Insights from an examination of assumptions and mechanisms invoked in existing models. Ecology Letters, 7, 480–490.

    Google Scholar 

  • Sarmiento, G. (1984). The ecology of Neotropical savannas (235 pp). Cambridge: Harvard University Press.

    Google Scholar 

  • Sarmiento, G. (1996). Biodiversity and water relations in tropical savannas. In O. T. Solbrig, E. Medina, & J. F. Silva (Eds.), Biodiversity and savanna ecosystem processes (pp. 61–75). Berlin: Springer.

    Google Scholar 

  • Sarmiento, G., & Monasterio, M. (1983). Life forms and phenology. In F. Boulière (Ed.), Tropical savannas (pp. 79–108). Amsterdam: Elsevier.

    Google Scholar 

  • Scheiter, S., & Higgins, S. I. (2007). Partitioning of root and shoot competition and the stability of savannas. The American Naturalist, 170, 587–601.

    PubMed  Google Scholar 

  • Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90, 480–494.

    Google Scholar 

  • Schmid, M. (1974). Végétation du Vietnam. Le massif sud-Annamitique et les regions limitrophes. Mém. ORSTOM, 74, 1–107.

    Google Scholar 

  • Schmithüsen, J. (1968). Allgemeine Vegetationsgeographie (3rd ed., 463 pp). Berlin: Walter de Gruyter & Co.

    Google Scholar 

  • Scholes, R. J., & Archer, S. R. (1997). Tree-grass interactions in savannas. Annual Review of Ecology and Systematics, 28, 517–544.

    Google Scholar 

  • Scholes, R. J., & Walker, B. H. (1993). An African savanna: Synthesis of the Nylsvley study (318 pp). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schroeder, F.-G. (1998). Lehrbuch der Pflanzengeographie (457 pp). Wiesbaden: Quelle & Meyer.

    Google Scholar 

  • Schultz, J. (2000). Handbuch der Ökozonen (577 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Schulze, E.-D., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., & Scherer-Lorenzen, M. (2018). Plant ecology (2nd ed., 910 pp). Berlin: Springer.

    Google Scholar 

  • Seibert, P. (1996). Farbatlas Südamerika. Landschaften und Vegetation (288 pp). Stuttgart: E. Ulmer.

    Google Scholar 

  • Sileshi, G. W., Arshad, M. A., Konaté, S., & Nkunika, P. O. Y. (2010). Termite-induced heterogeneity in African savanna vegetation: Mechanisms and patterns. Journal of Vegetation Science, 21, 923–937.

    Google Scholar 

  • Simon, M. F., Grether, R., Queiroz, L. P., Skema, C., Pennington, R. T., & Hughes, C. E. (2009). Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proceedings of the National Academy of Sciences of the United States of America, 106, 20359–20364.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skarpe, C., & Hester, A. J. (2008). Plant traits, browsing and grazing herbivores, and vegetation dynamics. In I. J. Gordon & H. H. T. Prins (Eds.), The ecology of browsing and grazing (Ecological studies) (Vol. 195, pp. 217–261).

    Google Scholar 

  • Smit, G. N., & Rethman, N. F. G. (1998). Root biomass, depth distribution and relations with leaf biomass of Colophospermum mopane in a southern African savanna. South African Journal of Botany, 64, 38–43.

    Google Scholar 

  • Smit, G. N., & Rethman, N. F. G. (2000). The influence of tree thinning on the soil water in a semi-arid savanna of Southern Africa. Journal of Arid Environments, 44, 41–59.

    Google Scholar 

  • Smith, P., & Allen, Q. (2004). Field guide to the trees and shrubs of the Miombo woodlands (176 pp). Kew: Royal Botanical Garden.

    Google Scholar 

  • Solbrig, O. T. (1996). The diversity of the savanna ecosystem. In O. T. Solbrig, E. Medina, & J. F. Silva (Eds.), Biodiversity and savanna ecosystem processes (Ecological studies) (Vol. 121, pp. 1–27).

    Google Scholar 

  • Spaargaren, O. C., & Deckers, J. (1998). The world reference base for soil resources. An introduction with special reference to soils of tropical forest ecosystems. In A. Schulte & D. E. Ruhiyat (Eds.), Soils of tropical Forest ecosystems: Characteristics, ecology and management (pp. 21–28). Berlin: Springer.

    Google Scholar 

  • Tinley, K. L. (1982). The influence of soil moisture balance on ecosystem patterns in Southern Africa. In B. J. Huntley & B. H. Walker (Eds.), Ecology of tropical savannas (Ecological studies) (Vol. 42, pp. 175–192).

    Google Scholar 

  • Trapnell, C. G. (1959). Ecological results of woodland burning experiments in northern Rhodesia. Journal of Ecology, 47, 129–168.

    Google Scholar 

  • Treydte, A. C., van Beeck, L., Ludwig, F., & Heitkönig, I. M. A. (2008). Improved quality of beneath-canopy grass in south African savannas: Local and seasonal variation. Journal of Vegetation Science, 19, 663–670.

    Google Scholar 

  • Troll, C. (1936). Termitensavannen. In H. Louis & W. Panzer (Eds.), Länderkundliche Forschung. Festschrift Norbert Krebs. J (pp. 275–312). Stuttgart: Engelhorn.

    Google Scholar 

  • Van de Vijver, C. A. D. M., Poot, P., & Prins, H. H. T. (1999). Causes of increased nutrient concentrations in post-fire regrowth in an east African savanna. Plant and Soil, 214, 173–185.

    Google Scholar 

  • Van der Plas, F., Howison, R., Reinders, J., Fokkema, W., & Olff, H. (2013). Functional traits of trees on and off termite mounds: Understanding the origin of biotically-driven heterogeneity in savannas. Journal of Vegetation Science, 24, 227–238.

    Google Scholar 

  • Veldman, J. W., & Putz, F. E. (2011). Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biological Conservation, 144, 1419–1429.

    Google Scholar 

  • Venter, F. J., & Gertenbach, W. P. D. (1986). A cursory review of the climate and vegetation of the Kruger national park. Koedoe, 29, 139–148.

    Google Scholar 

  • Walker, B. H., & Noy-Meir, I. (1982). Aspects of the stability and resilience of savanna ecosystems. In B. J. Huntley & B. H. Walker (Eds.), Ecology of tropical savannas (Ecological studies) (Vol. 42, pp. 556–590).

    Google Scholar 

  • Walker, J., & Gillison, A.N. (1982). Australian savannas. In B. J. Huntley & B. H. Walker (Eds.), Ecology of tropical savannas (Ecological studies) (Vol. 42, pp. 5–24).

    Google Scholar 

  • Walter, H. (1962). Plant associations in the humid tropics of India as affected by climate with special reference to periods of drought in the monsoon region. UNESCO/NS/HT/106 B, 17 pp., http://unesdoc.unesco.org/images/0015/001532/153293eb.pdf

  • Walter, H. (1973). Vegetation der Erde in öko-physiologischer Betrachtung (Die tropischen und subtropischen Zonen) (Vol. I, 3rd ed., 743 pp). Fischer, Jena: VEB G.

    Google Scholar 

  • Walter, H., & Breckle, S.-W. (2004). Ökologie der Erde (Spezielle Ökologie der Tropischen und Subtropischen Zonen) (Vol. 2, 3rd ed., 764 pp). Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Warner, R. R., & Chesson, P. L. (1985). Coexistence mediated by recruitment fluctuations: A field guide to the storage effect. The American Naturalist, 125, 769–787.

    Google Scholar 

  • Wein, R. W., & MacLean, D. A. (Eds.). (1983). The role of fire in northern circumpolar ecosystems (322 pp). New York: Wiley.

    Google Scholar 

  • Whelan, R. J., Rodgerson, L., Dickman, C. R., & Sutherland, E. F. (2002). Critical life cycles of plants and animals: Developing a process-based understanding of population changes in fire-prone landscapes. In R. A. Bradstock, J. E. Williams, & A. M. Gill (Eds.), Flammable Australia. The fire regimes and biodiversity of a continent (pp. 94–124). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wiegand, K., Saltz, D., & Ward, D. (2006). A patch-dynamics approach to savanna dynamics and woody plant encroachment – Insights from an arid savanna. Perspectives in Plant Ecology, Evolution and Systematics, 7, 229–242.

    Google Scholar 

  • Wittig, R., Hahn-Hadjali, K., Krohmer, J., & Müller, J. (2000). Nutzung, Degradation und Regeneration von Flora und Vegetation in westafrikanischen Savannenlandschaften. Berichte der Reinhold Tüxen-Gesellschaft, 12, 263–281.

    Google Scholar 

  • Wittig, R., König, K., Schmidt, M., & Szarzynski, J. (2007). A study of climate change and anthropogenic impacts in West Africa. Environmental Science and Pollution Research, 14, 182–189.

    PubMed  Google Scholar 

  • Woinarski, J. C. Z., Risler, J., & Kean, L. (2004). Response of vegetation and vertebrate fauna to 23 years of fire exclusion in a tropical eucalyptus open forest, Northern Territory, Australia. Austral Ecology, 29, 156–176.

    Google Scholar 

  • Wood, T. G., & Sands, W. A. (1978). The role of termites in ecosystems. In M. V. Brian (Ed.), Production ecology of ants and termites (pp. 245–292). Cambridge: Cambridge University Press.

    Google Scholar 

  • Zech, W., Schad, P., & Hintermaier-Erhard, G. (2014). Böden der Welt: Ein Bildatlas (2nd ed., 152 pp). Berlin/Heidelberg: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfadenhauer, J.S., Klötzli, F.A. (2020). Zonal Vegetation of the Tropical Zone with Summer Rain. In: Global Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-49860-3_3

Download citation

Publish with us

Policies and ethics