Skip to main content

Biological Control of Plant Diseases: Opportunities and Limitations

  • Chapter
  • First Online:
Plant Microbiome Paradigm

Abstract

Plant diseases are important challenge to agriculture worldwide. Annually millions of tons of agricultural produce are lost due to the actions of plants pathogens. Past historical evidences are available showing the great mass migration and death of humans caused by the disease outbreak. Currently, several measures have been adopted to control the loss of crop productivity caused by fungal diseases. Physical and chemical approaches have gained huge success in managing the plant diseases, but being costly and toxic to natural environment in most of the cases, these are not preferred by the farmers. Moreover, the use of agrochemicals to control the plant pathogens has evoked the phenomenon of pest resistance and thus aggravating the seriousness of plant diseases and loss of crop productivity. To minimize the risks of synthetic chemicals, biological control measures have been introduced to control the fast multiplication of several plant diseases; however, under natural environmental conditions, their efficiency is very much affected. Plant systems have evolved several mechanisms to deal with the encountered pathogens. Enhancing the plant immunity against diseases caused by important plant pathogens by identifying and introducing the genes promoting the diseases resistance may serve as a good option in near future to control the plant disease for human welfare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhtar J, Khalid A, Kumar B (2008) Soil solarization: a non-chemical tool for plant protection. Green Farming 1:50–53

    Google Scholar 

  • Ballio A (1991) Non-host-selective fungal phytotoxins: biochemical aspects of their mode of action. Experientia 47:783–790

    CAS  Google Scholar 

  • Barak R, Chet I (1990) Lectin of Sclerotium rolfsii: its purification and possible function in fungal−fungal interaction. J Appl Microbiol 69:101–112

    CAS  Google Scholar 

  • Bhar A, Chatterjee M, Gupta S, Das S (2018) Salicylic acid regulates systemic defense signaling in chickpea during Fusarium oxysporum f. sp. ciceri race 1 infection. Plant Mol Biol Report 36:162–175

    CAS  Google Scholar 

  • Bhardwaj U, Raj H (2004) Mulching with transparent polyethylene and root dip in fungicides for the management of collar and root rot of strawberry. Indian Phytopathol 57(1):48–52

    Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern recognition receptors. Annu Rev Plant Biol 60:379–406

    CAS  PubMed  Google Scholar 

  • Bonardi V, Tang S, Stallmann A, Roberts M, Cherkis K, Dangl JL (2011) Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proc Natl Acad Sci 108:16463–16468

    CAS  PubMed  Google Scholar 

  • Bonardi V, Cherkis K, Nishimura MT, Dangl JL (2012) A new eye on NLR proteins: focused on clarity or diffused by complexity? Curr Opin Immunol 24:41–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron RK, Dixon RA, Lamb CJ (1994) Biologically induced systemic acquired resistance in Arabidopsis thaliana. Plant J 5:715–725

    Google Scholar 

  • Chandok MR, Ytterberg AJ, van Wijk KJ, Klessig DF (2003) The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxilase complex. Cell 113:469–482

    CAS  PubMed  Google Scholar 

  • Charkowski AO (2018) The changing face of bacterial soft-rot diseases. Annu Rev Phytopathol 56:269–288

    CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  PubMed  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    CAS  PubMed  Google Scholar 

  • Cook RJ (2014) Plant health management: pathogen suppressive soils. In: Encyclopedia of agriculture and food systems. Elsevier, pp 441–455

    Google Scholar 

  • Cook RJ, Baker KF (1983) The nature and practice of biological control of plant pathogens. APS, St. Paul, p 539

    Google Scholar 

  • Das A, Prasad R, Srivastava A, Giang PH, Bhatnagar K, Varma A (2007) Fungal siderophores: structure, functions and regulations. In: Varma A, Chincholkar SB (eds) Microbial siderophores, vol 12. Springer-Verlag, Berlin-Heidelberg, pp 1–42

    Google Scholar 

  • Davidse LC, Gerritsma OCM, Hofman AE (1981) Mode d’action du metalaxyl. Phytiatrie-Phytofarmacie 30:235–244

    CAS  Google Scholar 

  • Dempsey DMA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Crit Rev Plant Sci 18:547–575

    CAS  Google Scholar 

  • Dhingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. J Food Sci Technol 49(3):255–266

    CAS  PubMed  Google Scholar 

  • Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y (2018) Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173:1454–1467

    CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva N (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADPribose. Proc Natl Acad Sci USA 95:10328–10333

    CAS  PubMed  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Google Scholar 

  • Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein L, Nicholson R (2016) Adhesion and adhesives of fungi and oomycetes. In: Smith AM (ed) Biological adhesives. Springer, Cham, pp 25–55

    Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    CAS  PubMed  Google Scholar 

  • Fry WE (2012) Principles of plant disease management. Academic, New York, pp 1–11

    Google Scholar 

  • Gfeller A, Dubugnon L, Liechti R, Farmer EE (2010) Jasmonate biochemical pathway. Sci Signal 3:cm3

    PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  Google Scholar 

  • Graniti A (1991) Phytotoxins and their involvement in plant diseases. Introduction Exp 47:751–755

    CAS  Google Scholar 

  • Gross GG (1985) Biosynthesis and metabolism of phenolic acids and monolignols. In: Higuchi T (ed) Biosynthesis and biodegradation of Wood components. Academic, New York, pp 229–271

    Google Scholar 

  • Guo Q, Major IT, Howe GA (2018) Resolution of growth–defense conflict: mechanistic insights from jasmonate signaling. Curr Opin Plant Biol 44:72–81

    CAS  Google Scholar 

  • Hajek AE, Eilenberg J (2018) Natural enemies: an introduction to biological control, 2nd edn. Cambridge University Press, pp 1–21

    Google Scholar 

  • Heath MC (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124

    CAS  Google Scholar 

  • Hill S, Hammer PE, Ligon J (2018) The role of antifungal metabolites in biological control of plant disease. In: Gresshoff PM (ed) Technology transfer of plant biotechnology. CRC Press, Boca Raton, FL, pp 41–48

    Google Scholar 

  • Homma Y, Kato Z, Hirayama F, Konno K, Shirahama H, Suzui T (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:723–728

    CAS  Google Scholar 

  • Horsfall JG (1956) Principles of fungicidal action, vol 30. Chronica Botanica, Waltham, pp 2–40

    Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    CAS  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium preemergence damping-off by the bacterium. Phytopathology 78:1075–1078

    CAS  Google Scholar 

  • Huang X, Stettmaier K, Michel C, Hutzler P, Mueller MJ, Durner J (2004) Nitric oxide is induced by wounding and influences jasmonic acid signaling in Arabidopsis thaliana. Planta 218:938–946

    CAS  PubMed  Google Scholar 

  • Huang X, Zhu GQ, Liu Q, Chen L, Li YJ, Hou BK (2018) Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids. Plant Physiol 176:01530

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858

    CAS  PubMed  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol 71:3786–3796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    CAS  PubMed  Google Scholar 

  • Jennings DE, Duan JJ, Follett PA (2017) Environmental impacts of arthropod biological control: an ecological perspective. In: Coll M, Wajnberg E (eds) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. Wiley, Chichester, p 105

    Google Scholar 

  • Jeyaratnam J (1990) Acute pesticide poisoning: a major global health problem. World Health Stat Q 43(3):139–144

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323

    CAS  PubMed  Google Scholar 

  • Juturu V, Wu JC (2014) Microbial cellulases: engineering, production and applications. Renew Sust Energ Rev 33:188–203

    CAS  Google Scholar 

  • Kapoor D, Singh S, Kumar V, Romero R, Prasad R, Singh J (2019) Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene. https://doi.org/10.1016/j.plgene.2019.100182

  • Kareem A (2015) Management of plant diseases. Research gate, pp 4–42

    Google Scholar 

  • Katan J (1981) Solar heating (solarization) of soil for control of soilborne pests. Annu Rev Phytopathol 19:211–236

    Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with Ca2+ binding motifs. Plant Cell 10:255–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kerkenaar A (1981) On the antifungal mode of action of metalaxyl, an inhibitor of nucleic acid synthesis in Pythium splendens. Pestic Biochem Physiol 16:1–13

    CAS  Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  • Kim YS, Kim HM, Chang C, Hwang IC, Oh H, Ahn JS, Kim KD, Hwang BK, Kim BS (2007) Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manag Sci 63(12):1208–1214

    CAS  PubMed  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 20(4):373–382

    Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20(1):138–145

    CAS  PubMed  Google Scholar 

  • Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y (2000) Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci 97:8849–8855

    CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    CAS  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kubicek CP, Starr TL, Glass NL (2014) Plant cell wall–degrading enzymes and their secretion in plant-pathogenic fungi. Annu Rev Phytopathol 52:427–451

    PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Ann Rev Plant Physiol Plant Mol Biol 48:251–275

    CAS  Google Scholar 

  • Lawton KA, Potter SL, Uknes S, Ryals J (1994) Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6:581–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Del Rio TG, Jones CD, Tringe SG, Dangl JL (2015) Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    CAS  PubMed  Google Scholar 

  • Leclère V, Béchet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    PubMed  PubMed Central  Google Scholar 

  • Lee SY, Tindwa H, Lee YS, Naing KW, Hong SH, Nam Y, Kim KY (2012) Biocontrol of anthracnose in pepper using chitinase, beta-1, 3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224. J Microbiol Biotechnol 22(10):1359–1366

    CAS  PubMed  Google Scholar 

  • Li S, Jochum CC, Yu F, Zaleta-Rivera K, Du L, Harris SD, Yuen GY (2008a) An antibiotic complex from Lysobacter enzymogenes strain C3: antimicrobial activity and role in plant disease control. Phytopathology, 98(6), 695–701.

    Google Scholar 

  • Li W, Csukai M, Corran A, Crowley P, Solomon PS, Oliver RP (2008b) Malayamycin, a new streptomycete antifungal compound, specifically inhibits sporulation of Stagonospora nodorum (Berk) Castell and Germano, the cause of wheat glume blotch disease. Pest Management Science: formerly Pesticide Science, 64(12), 1294–1302.

    Google Scholar 

  • Lu C, Qi J, Hettenhausen C, Lei Y, Zhang J, Zhang M, Zhang C, Song J, Li J, Cao G, Malook SU (2018) Elevated CO2 differentially affects tobacco and rice defense against lepidopteran larvae via the jasmonic acid signaling pathway. J Integr Plant Biol 60:412–431

    CAS  PubMed  Google Scholar 

  • Marín-Rodríguez MC, Orchard J, Seymour GB (2002) Pectate lyases, cell wall degradation and fruit softening. J Exp Bot 53:2115–2119

    PubMed  Google Scholar 

  • Mathre DE (1970) Mode of action of oxathiin systemic fungicides. I. Effect of carboxin and oxycarboxin on the general metabolism of several basidiomycetes. Phytopathol 60(4):671–676

    Google Scholar 

  • Mathre DE (1971) Mode of action of oxathiin systemic fungicides: III. Effect on mitochondrial activities. Pestic Biochem Physiol 1:216–224

    CAS  Google Scholar 

  • McCallan SEA (1967) History of fungicides. In: Torgeson DC (ed) Fungicides: an advanced treatise, vol 1. Academic, New York, pp 1–37

    Google Scholar 

  • Mendes LW, Raaijmakers JM, de Hollander M, Mendes R, Tsai SM (2018) Influence of resistance breeding in common bean on rhizosphere microbiome composition and function. ISME J 12:212–224

    Google Scholar 

  • Modolo LV, Cunha FQ, Braga MR, Salgado L (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol 130:1288–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montesinos E, Bardaji E (2008) Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem Biodivers 5:1225–1237

    CAS  PubMed  Google Scholar 

  • Moyne AL, Shelby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against Aspergillus flavus. J Appl Microbiol 90:622–629

    CAS  PubMed  Google Scholar 

  • Mur LA, Carver TL, Prats E (2006) NO way to live; the various roles of nitric oxide in plant–pathogen interactions. J Exp Bot 57:489–505

    CAS  PubMed  Google Scholar 

  • Mur LA, Kenton P, Lloyd AJ, Ougham H, Prats E (2008) The hypersensitive response; the centenary is upon us but how much do we know? J Exp Bot 59:501–520

    CAS  PubMed  Google Scholar 

  • Mur LA, Prats E, Pierre S, Hall MA, Hebelstrup KH (2013) Integrating nitric oxideinto salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215

    PubMed  PubMed Central  Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50(1):715–731

    CAS  PubMed  Google Scholar 

  • Noritake T, Kawakita K, Doke N (1996) Nitric oxide induces phytoalexin accumulation in potato tuber tissues. Plant Cell Physiol 37:113–116

    CAS  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Google Scholar 

  • Oerke EC, Dehne HW, Schönbeck F, Weber A (1994) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam

    Google Scholar 

  • Ogle H (2016) Disease management: chemicals, pp 373–389

    Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    CAS  Google Scholar 

  • Orozco-Cárdenas ML, Ryan C (2002) Nitric oxide negatively modulates wound signaling in tomato plants. Plant Physiol 130:487–493

    PubMed  PubMed Central  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instruct 2:1117–1142

    Google Scholar 

  • Patil SS (1974) Toxins produced by phytopathogenic bacteria. Annu Rev Phytopathol 12:259–279

    CAS  Google Scholar 

  • Penninckx IA, Eggermont K, Terras FR, Thomma BP, De Samblanx GW, Buchala A, Métraux JP, Manners JM, Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pennisi E (2001) The push to pit genomics against fungal pathogens. Science 292:2273–2274

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Van Wees SC, Hoffland E, Van Pelt JA, Van Loon LC (1996) Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489

    CAS  PubMed  Google Scholar 

  • Pieterse CM, de Jonge R, Berendsen RL (2016) The soil-borne supremacy. Trends Plant Sci 21:171–173

    CAS  PubMed  Google Scholar 

  • Prasad R, Chhabra S, Gill SS, Singh PK, Tuteja N (2020) The microbial symbionts: potential for the crop improvement in changing environments. In: Tuteja N, Tuteja R, Passricha N, Saifi SK (eds) Advancement in crop improvement techniques. Elsevier, Amsterdam, Netherlands, pp 233–240

    Google Scholar 

  • Prats E, Mur LA, Sanderson R, Carver TL (2005) Nitric oxide contributes both to papilla-based resistance and the hypersensitive response in barley attacked by Blumeria graminis f. sp. hordei. Mol Plant Pathol 6:65–78

    CAS  PubMed  Google Scholar 

  • Pusztahelyi T, Holb IJ, Pócsi I (2015) Secondary metabolites in fungus-plant interactions. Front Plant Sci 6:573

    PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, Mazzola M (2016) Ecology. Soil immune responses. Science 352:1392–1393

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, De Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537

    CAS  PubMed  Google Scholar 

  • Rosenheim JA, Kaya HK, Ehler LE, Marois JJ, Jaffee BA (1995) Intraguild predation among biological-control agents: theory and evidence. Biol Control 5:303–335

    Google Scholar 

  • Scheffer RP, Livingston RS (1984) Host-selective toxins and their role in plant diseases. Science 223:17–21

    CAS  PubMed  Google Scholar 

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297

    PubMed  Google Scholar 

  • Shine MB, Xiao X, Kachroo P, Kachroo A (2018) Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Sci 279:81. https://doi.org/10.1016/j.plantsci.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1997) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sijpesteijn AK (1982) Mechanism of action of fungicides. In: Fungicide resistance in crop protection. Centre for Agricultural Publishing and Documentation Wageningen, pp 32–45

    Google Scholar 

  • Sinclair WA, Campana RJ (1978) Dutch elm disease: perspectives after 60 years. In: Sinclair WA, Campana RJ (eds) Search-agriculture. Cornell University, Ithaca

    Google Scholar 

  • Singh VK, Pandey P (2012) Physical methods in management of plant diseases. In: Singh VK, Singh Y, Singh A (eds) Eco-friendly innovative approaches in plant disease management. International Book, New Delhi, pp 21–30

    Google Scholar 

  • Singh D, Raina TK, Kumar A, Singh J, Prasad R (2019) Plant microbiome: a reservoir of novel genes and metabolites. Plant Gene. https://doi.org/10.1016/j.plgene.2019.100177

  • Smith KP, Havey MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142

    Google Scholar 

  • Staswick PE, Tiryaki I (2004) The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16:2117–2127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell VO, Duffy B (2012) Use of antibiotics in plant agriculture. Rev Sci Tech 31(1):199–210

    Google Scholar 

  • Takken FL, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:375–384

    CAS  PubMed  Google Scholar 

  • Tjamos EC, Papavizas GC, Cook RJ (eds) (2013) Biological control of plant diseases: progress and challenges for the future, vol 230. Springer Science & Business Media, New York, pp 1–20

    Google Scholar 

  • Toruño TY, Stergiopoulos I, Coaker G (2016) Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu Rev Phytopathol 54:419–441

    PubMed  PubMed Central  Google Scholar 

  • Tougeron K, Tena A (2018) Hyperparasitoids as new targets in biological control in a global change context. Biol Control 130:164. https://doi.org/10.1016/j.biocontrol.2018.09.003

    Article  Google Scholar 

  • Trutmann P, Keane PJ, Merriman PR (1982) Biological control of Sclerotinia sclerotiorum on aerial parts of plants by the hyperparasite Coniothyrium minitans. Trans Br Mycol Soc 78:521–529

    Google Scholar 

  • Ullstrup AJ (1972) The impacts of the southern corn leaf blight epidemics of 1970-1971. Annu Rev Phytopathol 10:37–50

    Google Scholar 

  • Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma–plant–pathogen interactions. Soil Biology and Biochemistry, 40(1), 1–10

    Google Scholar 

  • Voisard C, Keel C, Haas D, Dèfago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walton JD (1996) Host-selective toxins: agents of compatibility. Plant Cell 8:1723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    PubMed  Google Scholar 

  • Weller DM, Raaijmakers JM, McSpadden Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    CAS  PubMed  Google Scholar 

  • Wilhite SE, Lumsden RD, Straney DC (2001) Peptide synthetase gene in Trichoderma virens. Appl Environ Microbiol 67:5055–5062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willis JD (2016) Modification of carbohydrate active enzymes in switchgrass (Panicum virgatum L.) to improve saccharification and biomass yields for biofuels

    Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defense against herbivores and pathogens. Curr Opin Plant Biol 5:300–307

    CAS  PubMed  Google Scholar 

  • Wolpert TJ, Dunkle LD, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: what’s in a name? Annu Rev Phytopathol 40:251–285

    CAS  PubMed  Google Scholar 

  • Wood RKS (1960) Pectic and cellulolytic enzymes in plant disease. Annu Rev Plant Physiol 11:299–322

    CAS  Google Scholar 

  • Xu YI, Chang PFL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HY, Zhang C, Li ZC, Wang ZR, Jiang XX, Shi YF, Tian SN, Braun E, Mei Y, Qiu WL, Li S (2018) The MAPK kinase kinase GmMEKK1 regulates cell death and defense responses. Plant Physiol 178:907–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Yadav PK, Yadav D, Yadav KDS (2009) Pectin lyase: a review. Process Biochem 44:1–10

    Google Scholar 

  • Yoder OC (1980) Toxins in pathogenesis. Annu Rev Phytopathol 18:103–129

    CAS  Google Scholar 

  • Yoshihisa H, Zenji S, Fukushi H, Katsuhiro K, Haruhisa S, Takahito S (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:723–728

    Google Scholar 

  • Zeidler D, Zahringer U, Gerber I, Dubery I, Hartung T, Bors W (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    CAS  PubMed  Google Scholar 

  • Zentmyer GA, Bald JG (1977) Management of the environment. Plant Dis 1:121–144

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to University Grants Commission (UGC) New Delhi, Council of Scientific and Industrial Research (CSIR) New Delhi, Head, CAS in Botany, Banaras Hindu University, Varanasi, DST-PURSE, and ISLS, Banaras Hindu University, Varanasi, India for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nawal Kishore Dubey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A. et al. (2020). Biological Control of Plant Diseases: Opportunities and Limitations. In: Varma, A., Tripathi, S., Prasad, R. (eds) Plant Microbiome Paradigm. Springer, Cham. https://doi.org/10.1007/978-3-030-50395-6_7

Download citation

Publish with us

Policies and ethics