Skip to main content

Crowd Dynamics Through Conservation Laws

  • Chapter
  • First Online:
Crowd Dynamics, Volume 2

Abstract

We consider several macroscopic models, based on systems of conservation laws, for the study of crowd dynamics. All the systems considered here contain nonlocal terms, usually obtained through convolutions with smooth functions, used to reproduce the visual horizon of each individual. We classify the various models according to the physical domain (the whole space \({\mathbb {R}}^N\) or a bounded subset), to the terms affected by the nonlocal operators, and to the number of different populations we aim to describe. For all these systems, we present the basic well posedness and stability results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Aggarwal, R.M. Colombo, P. Goatin, Nonlocal systems of conservation laws in several space dimensions. SIAM J. Numer. Anal. 53(2), 963–983 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. J.P. Agnelli, F. Colasuonno, D. Knopoff, A kinetic theory approach to the dynamics of crowd evacuation from bounded domains. Math. Models Methods Appl. Sci. 25(1), 109–129 (2015)

    MathSciNet  MATH  Google Scholar 

  3. P. Amorim, R.M. Colombo, A. Teixeira, On the numerical integration of scalar nonlocal conservation laws. ESAIM Math. Model. Numer. Anal. 49(1), 19–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Bagarello, F. Gargano, F. Oliveri, A phenomenological operator description of dynamics of crowds: escape strategies. Appl. Math. Model. 39(8), 2276–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Bailo, J.A. Carrillo, P. Degond, Pedestrian models based on rational behaviour, in Modeling and Simulation in Science, Engineering and Technology (Birkhäuser, New York, 2018), pp. 259–292

    MATH  Google Scholar 

  6. N. Bellomo, A. Bellouquid, On multiscale models of pedestrian crowds from mesoscopic to macroscopic. Commun. Math. Sci. 13(7), 1649–1664 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Bellomo, S. Berrone, L. Gibelli, A.B. Pieri, Macroscopic first order models of multicomponent human crowds with behavioral dynamics, in Advances in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser/Springer, Cham, 2016), pp. 295–306

    Google Scholar 

  8. N. Bellomo, L. Gibelli, N. Outada, On the interplay between behavioral dynamics and social interactions in human crowds. Kinet. Relat. Models 12(2), 397–409 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Berthelin, P. Goatin, Regularity results for the solutions of a non-local model of traffic flow. Discrete Contin. Dyn. Syst. 39(6), 3197–3213 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Bianchini, R.M. Colombo, On the stability of the standard Riemann semigroup. Proc. Am. Math. Soc. 130(7), 1961–1973 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Borsche, R.M. Colombo, M. Garavello, On the coupling of systems of hyperbolic conservation laws with ordinary differential equations. Nonlinearity 23(11), 2749–2770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. R. Borsche, R.M. Colombo, M. Garavello, Mixed systems: ODEs - balance laws. J. Differ. Equ. 252(3), 2311–2338 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Borsche, R.M. Colombo, M. Garavello, A. Meurer, Differential equations modeling crowd interactions. J. Nonlinear Sci. 25(4), 827–859 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Borsche, A. Klar, F. Schneider, Numerical methods for mean-field and moment models for pedestrian flow, in Crowd Dynamics. Vol. 1. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser/Springer, Cham, 2018), pp. 167–209

    Google Scholar 

  15. F. Bouchut, B. Perthame, Kružkov’s estimates for scalar conservation laws revisited. Trans. Am. Math. Soc. 350(7), 2847–2870 (1998)

    Article  MATH  Google Scholar 

  16. A. Bressan, Hyperbolic Systems of Conservation Laws. Oxford Lecture Series in Mathematics and Its Applications, vol. 20 (Oxford University Press, Oxford, 2000). The one-dimensional Cauchy problem

    Google Scholar 

  17. A. Bressan, B. Piccoli, Introduction to the Mathematical Theory of Control. AIMS Series on Applied Mathematics, vol. 2 (American Institute of Mathematical Sciences, Springfield, 2007)

    Google Scholar 

  18. A. Bressan, W. Shen, On traffic flow with nonlocal flux: a relaxation representation (2019). arXiv: 1911.03636

    Google Scholar 

  19. C. Chalons, P. Goatin, L.M. Villada, High-order numerical schemes for one-dimensional nonlocal conservation laws. SIAM J. Sci. Comput. 40(1), A288–A305 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. G.-Q. Chen, K.H. Karlsen, Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients. Commun. Pure Appl. Anal. 4(2), 241–266 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. F.A. Chiarello, P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM Math. Model. Numer. Anal. 52(1), 163–180 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. F.A. Chiarello, P. Goatin, Non-local multi-class traffic flow models. Netw. Heterog. Media 14(2), 371–387 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. F.A. Chiarello, P. Goatin, E. Rossi, Stability estimates for non-local scalar conservation laws. Nonlinear Anal. Real World Appl. 45, 668–687 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Colombi, M. Scianna, A. Alaia, A discrete mathematical model for the dynamics of a crowd of gazing pedestrians with and without an evolving environmental awareness. Comput. Appl. Math. 36(2), 1113–1141 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. R.M. Colombo, F. Marcellini, Nonlocal systems of balance laws in several space dimensions with applications to laser technology. J. Differ. Equ. 259(11), 6749–6773 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. R.M. Colombo, L.-M. Mercier, Nonlocal crowd dynamics models for several populations. Acta Math. Sci. 32(1), 177–196 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. R.M. Colombo, E. Rossi, Hyperbolic predators vs. parabolic prey. Commun. Math. Sci. 13(2), 369–400 (2015)

    Google Scholar 

  28. R.M. Colombo, E. Rossi, Nonlocal conservation laws in bounded domains. SIAM J. Math. Anal. 50(4), 4041–4065 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. R.M. Colombo, E. Rossi, Control in a mixed hyperbolic-parabolic predator prey model (2019, in preparation)

    Google Scholar 

  30. R.M. Colombo, E. Rossi, Modelling crowd movements in domains with boundaries. IMA J. Appl. Math. 84(5), 833–853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. R.M. Colombo, E. Rossi, A modeling framework for biological pest control. Math. Biosci. Eng. 17(mbe-17-02-072), 1413 (2020)

    Google Scholar 

  32. R.M. Colombo, M. Mercier, M.D. Rosini, Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7(1), 37–65 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. R.M. Colombo, M. Herty, M. Mercier, Control of the continuity equation with a non local flow. ESAIM Control Optim. Calc. Var. 17(2), 353–379 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. R.M. Colombo, M. Garavello, M. Lécureux-Mercier, A class of nonlocal models for pedestrian traffic. Math. Models Methods Appl. Sci. 22(4), 1150023, 34 (2012)

    Google Scholar 

  35. M. Colombo, G. Crippa, L.V. Spinolo. Blow-up of the total variation in the local limit of a nonlocal traffic model (2018)

    Google Scholar 

  36. M. Colombo, G. Crippa, M. Graff, L.V. Spinolo. On the role of numerical viscosity in the study of the local limit of nonlocal conservation laws (2019)

    Google Scholar 

  37. M. Colombo, G. Crippa, M. Graff, L.V. Spinolo. Recent results on the singular local limit for nonlocal conservation laws (2019)

    Google Scholar 

  38. M. Colombo, G. Crippa, L.V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes. Arch. Ration. Mech. Anal. 233(3), 1131–1167 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Corli, L. Malaguti, Viscous profiles in models of collective movement with negative diffusivity. Z. Angew. Math. Phys. 70(2), Art. 47, 22 (2019)

    Google Scholar 

  40. J.-M. Coron, M. Kawski, Z. Wang, Analysis of a conservation law modeling a highly re-entrant manufacturing system. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1337–1359 (2010)

    MathSciNet  MATH  Google Scholar 

  41. V. Coscia, C. Canavesio, First-order macroscopic modelling of human crowd dynamics. Math. Models Methods Appl. Sci. 18(Suppl.), 1217–1247 (2008)

    Google Scholar 

  42. G. Crippa, M. Lécureux-Mercier, Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow. Nonlinear Differ. Equ. Appl. 20(3), 523–537 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Cristiani, B. Piccoli, A. Tosin, Multiscale Modeling of Pedestrian Dynamics. MS&A. Modeling, Simulation and Applications, vol. 12 (Springer, Cham, 2014)

    Google Scholar 

  44. C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, 4th edn. (Springer, Berlin, 2016)

    Google Scholar 

  45. E. De Angelis, Nonlinear hydrodynamic models of traffic flow modelling and mathematical problems. Math. Comput. Model. 29(7), 83–95 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  46. M. Di Francesco, M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit. Arch. Ration. Mech. Anal. 217(3), 831–871 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Holden, N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences, vol. 152, 2nd edn. (Springer, Heidelberg, 2015)

    Google Scholar 

  48. H. Holden, N.H. Risebro, The continuum limit of Follow-the-Leader models—a short proof. Discrete Contin. Dyn. Syst. 38(2), 715–722 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. S.N. Kružhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    Google Scholar 

  50. M. Lécureux-Mercier, Improved stability estimates for general scalar conservation laws. J. Hyperbolic Differ. Equ. 8(4), 727–757 (2011). See also the revised version at http://math.univ-lyon1.fr/~mercier

  51. R. Loehner, On the modeling of pedestrian motion. Appl. Math. Model. 34(2), 366–382 (2010)

    Article  MathSciNet  Google Scholar 

  52. B.J. Lucier, A moving mesh numerical method for hyperbolic conservation laws. Math. Comput. 46(173), 59–69 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Marcellini, On the stability of a model for the cutting of metal plates by means of laser beams. Appl. Math. Lett. 68, 143–149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. S. Motsch, M. Moussaïd, E.G. Guillot, M. Moreau, J. Pettré, G. Theraulaz, C. Appert-Rolland, P. Degond, Modeling crowd dynamics through coarse-grained data analysis. Math. Biosci. Eng. 15(6), 1271–1290 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. B. Piccoli, F. Rossi, Measure-theoretic models for crowd dynamics, in Crowd Dynamics. Vol. 1. Modeling and Simulation in Science, Engineering and Technology (Birkhäuser/Springer, Cham, 2018), pp. 137–165

    Google Scholar 

  56. B. Piccoli, A. Tosin, Time-evolving measures and macroscopic modeling of pedestrian flow. Arch. Ration. Mech. Anal. 199(3), 707–738 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  57. E. Rossi, Definitions of solutions to the IBVP for multi-dimensional scalar balance laws. J. Hyperbolic Differ. Equ. 15(2), 349–374 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. E. Rossi, V. Schleper, Convergence of numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions. ESAIM Math. Model. Numer. Anal. 50(2), 475–497 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Twarogowska, P. Goatin, R. Duvigneau, Macroscopic modeling and simulations of room evacuation. Appl. Math. Model. 38(24), 5781–5795 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90(3), 563–596 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo M. Colombo .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Regular Entropy Solutions for IBVP Problems

In this appendix we briefly recall the concept of regular entropy solutions for an initial boundary value problem. To this aim, fix T > 0, an open and bounded subset Ω of \({\mathbb {R}}^N\), and let us consider the system

(7.1)

where satisfies, for every , \(u(t) \in {\mathbf {C}}^{2} ( \Omega ; {\mathbb {R}}^N)\) and \({\left \|u(t)\right \|}_{{\mathbf {C}}^{2}\left (\Omega ; {\mathbb {R}}^N\right )} \le M\) for a suitable positive constant M. The definition of a boundary entropy–entropy flux pair is as follows.

Definition A.1 ([28, Definition 4.1], [60, Definition 2])

The pair of functions is said a boundary entropy–entropy flux pair for (7.1) if:

  1. 1.

    the function zH(z, w) is convex for every \(w \in {\mathbb {R}}\);

  2. 2.

    the equality \(\partial _z Q\left (t, x, z, w\right ) = \left (\partial _z H\left (z, w\right )\right ) u\left (t, x\right )\) holds for every , \(x \in \overline \Omega \), and \(z, w \in {\mathbb {R}}\);

  3. 3.

    the equalities \(H\left (w, w\right ) = 0\), \(Q\left (t, x, w, w\right ) = 0\), and \(\partial _z H\left (w, w\right ) = 0\) hold for every , \(x \in \overline \Omega \), and \(w \in {\mathbb {R}}\).

It is now possible to state the definition of regular entropy solution.

Definition A.2 ([57, Definition 3.3])

A regular entropy solution to (7.1) is a function such that, for every boundary entropy–entropy flux pair \(\left (H, Q\right )\), in the sense of Definition A.1, for every \(k \in {\mathbb {R}}\) and for every \(\varphi \in {\mathbf {C}}_c^{1} ({\mathbb {R}} \times {\mathbb {R}}^N; {\mathbb {R}}^+)\), it holds

where \({\mathcal {H}}^{N-1}\) denotes the Hausdorff measure of dimension N − 1.

1.2 List of Symbols

C 0, 1(A; B):

with A and B subsets of normed vector spaces, is the set of functions defined on A, with values in B, that are Lipschitz continuous on A.

C k(A; B):

with A and B subsets of normed vector spaces, is the set of functions defined on A, with values in B, whose k-derivatives are continuous on A.

\({\mathbf {C}}_c^{k} (A;B)\) :

with A and B subsets of normed vector spaces, is the set of compactly supported functions defined on A, with values in B whose k-derivatives are continuous on A.

\(\overline {I}\) :

is the closure of the set I.

:

is the interior of the set I.

L p(A; B):

with p ≥ 1, \(A \subseteq {\mathbb {R}}^n\) and \(B \subseteq {\mathbb {R}}^m\), is the set of measurable functions f defined on A, with values in B, such that \({\left |f\right |}^p\) is Lebesgue integrable on A.

L (A; B):

with \(A \subseteq {\mathbb {R}}^n\) and \(B \subseteq {\mathbb {R}}^m\), is the set of measurable functions f defined on A, with values in B, essentially bounded.

\({\mathbb {R}}^+\) :

is the set \(\left [0, +\infty \right [\) of 0 and all positive real numbers.

:

is the set \(\left ]0, +\infty \right [\) of all strictly positive real numbers.

\(\mathbb S^{N-1}\) :

is the unit sphere in \({\mathbb {R}}^N\).

\( \mathop {\mathrm {spt}} \rho \) :

is the support of the function ρ.

W 1, p(A; B):

with 1 ≤ p ≤, \(A \subseteq {\mathbb {R}}^n\) and \(B \subseteq {\mathbb {R}}^m\), is the Sobolev space of functions defined in A with values in B whose first weak derivative is in L p.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Colombo, R.M., Lecureux-Mercier, M., Garavello, M. (2020). Crowd Dynamics Through Conservation Laws. In: Gibelli, L. (eds) Crowd Dynamics, Volume 2. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-50450-2_5

Download citation

Publish with us

Policies and ethics