Skip to main content

Progressive Supranuclear Palsy and Corticobasal Degeneration

  • Chapter
  • First Online:
Frontotemporal Dementias

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1281))

Abstract

Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative tauopathies with neuronal and glial lesions composed of tau that is composed predominantly of isomers with four repeats in the microtubule-binding domain (4R tau). The brain regions vulnerable to pathology in PSP and CBD overlap, but there are differences, particularly with respect to distribution of neuronal loss, the relative abundance of neuronal and glial lesions, the morphologic features of glial lesions, and the frequency of comorbid pathology. Both PSP and CBD have a wide spectrum of clinical manifestations, including disorders of movement and cognition. Recognition of phenotypic diversity in PSP and CBD may improve antemortem diagnostic accuracy, which tends to be very good for the most common presentation of PSP (Richardson syndrome), but poor for the most characteristic presentation of CBD (corticobasal syndrome: CBS). Development of molecular and imaging biomarkers may improve antemortem diagnostic accuracy. Currently, multidisciplinary symptomatic and supportive treatment with pharmacological and non-pharmacological strategies remains the standard of care. In the future, experimental therapeutic trials will be important to slow disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM et al (2011) Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol 122(2):137–153

    Article  PubMed  PubMed Central  Google Scholar 

  2. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622

    Article  CAS  PubMed  Google Scholar 

  3. Dickson DW (2004) Sporadic tauopathies: Pick’s disease, corticobasal degeneration, progressive suprnauclear palsy and argyrophilic grain disease. In: Esiri MM, Lee VMY, Trojanowski JQ (eds) The neuropathology of dementia, 2nd edn. Cambridge University Press, Cambridge/New York, pp 227–256

    Chapter  Google Scholar 

  4. Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R et al (2019) Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568(7752):420–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ et al (2017) Cryo-EM structures of tau filaments from Alzheimer’s disease. Nature 547(7662):185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kovacs GG, Ferrer I, Grinberg LT, Alafuzoff I, Attems J, Budka H et al (2016) Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol 131(1):87–102

    Article  CAS  PubMed  Google Scholar 

  7. Togo T, Sahara N, Yen SH, Cookson N, Ishizawa T, Hutton M et al (2002) Argyrophilic grain disease is a sporadic 4-repeat tauopathy. J Neuropathol Exp Neurol 61(6):547–556

    Article  CAS  PubMed  Google Scholar 

  8. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogenous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359

    Article  CAS  PubMed  Google Scholar 

  9. Dickson DW, Hauw J-J, Agid Y, Litvan I (2011) Progressive supranuclear palsy and corticobasal degeneration. In: Dickson DW, Weller RO (eds) Neurodegeneration: the molecular pathology of dementia and movement disorders, 2nd edn. Wiley-Blackwell/International Society of Neuropathology, Chichester/West Sussex, p xvii, 477 p.

    Chapter  Google Scholar 

  10. Nath U, Ben-Shlomo Y, Thomson R, Morris HR, Wood N, Lees A et al (2001) The prevalence of progressive supranuclear palsy (Steele–Richardson–Olszewski syndrome) in the UK. Brain 124(7):1438–1449

    Article  CAS  PubMed  Google Scholar 

  11. Coyle-Gilchrist IT, Dick KM, Patterson K, Rodríquez PV, Wehmann E, Wilcox A et al (2016) Prevalence, characteristics, and survival of frontotemporal lobar degeneration syndromes. Neurology 86(18):1736–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schrag A, Ben-Shlomo Y, Quinn N (1999) Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354(9192):1771–1775

    Article  CAS  PubMed  Google Scholar 

  13. Respondek G, Kurz C, Arzberger T, Compta Y, Englund E, Ferguson LW et al (2017) Which ante mortem clinical features predict progressive supranuclear palsy pathology? Mov Disord 32(7):995–1005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fleury V, Brindel P, Nicastro N, Burkhard PR (2018) Descriptive epidemiology of parkinsonism in the Canton of Geneva, Switzerland. Parkinsonism Relat Disord 54:30–39

    Article  PubMed  Google Scholar 

  15. Kawashima M, Miyake M, Kusumi M, Adachi Y, Nakashima K (2004) Prevalence of progressive supranuclear palsy in Yonago, Japan. Mov Disord: Off J Mov Disord Soc 19(10):1239–1240

    Article  Google Scholar 

  16. Takigawa H, Ikeuchi T, Aiba I, Morita M, Onodera O, Shimohata T et al (2016) Japanese longitudinal biomarker study in PSP and CBD (JALPAC): a prospective multicenter PSP/CBD cohort study in Japan. Parkinsonism Relat Disord 22:e120–e1e1

    Article  Google Scholar 

  17. Höglinger GU, Respondek G, Stamelou M, Kurz C, Josephs KA, Lang AE et al (2017) Clinical diagnosis of progressive supranuclear palsy: the movement disorder society criteria. Mov Disord:n/a–n/a

    Google Scholar 

  18. Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC et al (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47(1):1–9

    Article  CAS  PubMed  Google Scholar 

  19. Respondek G, Stamelou M, Kurz C, Ferguson LW, Rajput A, Chiu WZ et al (2014) The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov Disord: Off J Mov Disord Soc 29(14):1758–1766

    Article  Google Scholar 

  20. Litvan I, Mangone CA, McKee A, Verny M, Parsa A, Jellinger K et al (1996) Natural history of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) and clinical predictors of survival: a clinicopathological study. J Neurol Neurosurg Psychiatry 60(6):615–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maher E, Lees A (1986) The clinical features and natural history of the Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 36(7):1005

    Article  CAS  PubMed  Google Scholar 

  22. Golbe LI, Davis PH, Schoenberg BS, Duvoisin RC (1988) Prevalence and natural history of progressive supranuclear palsy. Neurology 38(7):1031

    Article  CAS  PubMed  Google Scholar 

  23. Litvan I, Agid Y (1992) Progressive supranuclear palsy: clinical and research approaches. Oxford University Press, New York

    Google Scholar 

  24. Collins S, Ahlskog J, Parisi JE, Maraganore D (1995) Progressive supranuclear palsy: neuropathologically based diagnostic clinical criteria. J Neurol Neurosurg Psychiatry 58(2):167–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chamberlain W (1971) Restriction in upward gaze with advancing age. Am J Ophthalmol 71(1):341–346

    Article  CAS  PubMed  Google Scholar 

  26. Vidailhet M, Rivaud S, Gouider-Khouja N, Pillon B, Bonnet AM, Gaymard B et al (1994) Eye movements in parkinsonian syndromes. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 35(4):420–426

    Article  CAS  Google Scholar 

  27. Gibb W, Esiri M, Lees A (1987) Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain 110(5):1131–1153

    Article  PubMed  Google Scholar 

  28. Grant MP, Cohen M, Petersen RB, Halmagyi GM, McDougall A, Tusa RJ et al (1993) Abnormal eye movements in Creutzfeldt–Jakob disease. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 34(2):192–197

    Article  CAS  Google Scholar 

  29. Paulson H, Subramony S (2003) Spinocerebellar Ataxia 3—Machado-Joseph disease (SCA3). In: Genetics of movement disorders. Elsevier, pp 57–69

    Google Scholar 

  30. Brüggemann N, Wandinger KP, Gaig C, Sprenger A, Junghanns K, Helmchen C et al (2016) Dystonia, lower limb stiffness, and upward gaze palsy in a patient with IgLON5 antibodies. Mov Disord 31(5):762–764

    Article  PubMed  Google Scholar 

  31. Adams C, McKeon A, Silber MH, Kumar R (2011) Narcolepsy, REM sleep behavior disorder, and supranuclear gaze palsy associated with Ma1 and Ma2 antibodies and tonsillar carcinoma. Arch Neurol 68(4):521–524

    Article  PubMed  Google Scholar 

  32. Boeve BF (2012) Progressive supranuclear palsy. Parkinsonism Relat Disord 18:S192–S1S4

    Article  PubMed  Google Scholar 

  33. Garbutt S, Riley D, Kumar A, Han Y, Harwood M, Leigh R (2004) Abnormalities of optokinetic nystagmus in progressive supranuclear palsy. J Neurol Neurosurg Psychiatry 75(10):1386–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quinn N (1996) The “round the houses” sign in progressive supranuclear palsy. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 40(6):951

    Article  CAS  Google Scholar 

  35. Lal V, Truong D (2019) Eye movement in movement disorders. Clin Parkinsonism Relat Disord 1:54–63

    Google Scholar 

  36. Kitthaweesin K, Riley DE, Leigh RJ (2002) Vergence disorders in progressive supranuclear palsy. Ann New York Acad Sci 956(1):504–507

    Article  Google Scholar 

  37. Yoon WT, Chung EJ, Lee SH, Kim BJ, Lee WY (2005) Clinical analysis of blepharospasm and apraxia of eyelid opening in patients with parkinsonism. J Clin Neurol 1(2):159–165

    Article  PubMed  PubMed Central  Google Scholar 

  38. Williams DR, Watt HC, Lees AJ (2006) Predictors of falls and fractures in bradykinetic rigid syndromes: a retrospective study. J Neurol Neurosurg Psychiatry 77(4):468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kluin KJ, Foster NL, Berent S, Gilman S (1993) Perceptual analysis of speech disorders in progressive supranuclear palsy. Neurology 43(3 Part 1):563

    Article  CAS  PubMed  Google Scholar 

  40. Müller J, Wenning GK, Verny M, McKee A, Chaudhuri KR, Jellinger K et al (2001) Progression of dysarthria and dysphagia in postmortem-confirmed parkinsonian disorders. Arch Neurol 58(2):259–264

    Article  PubMed  Google Scholar 

  41. Papapetropoulos S, Singer C, McCorquodale D, Gonzalez J, Mash DC (2005) Cause, seasonality of death and co-morbidities in progressive supranuclear palsy (PSP). Parkinsonism Relat Disord 11(7):459–463

    Article  PubMed  Google Scholar 

  42. Litvan I, Hauw J, Bartko J, Lantos P, Daniel S, Horoupian D et al (1996) Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. J Neuropathol Exp Neurol 55(1):97–105

    Article  CAS  PubMed  Google Scholar 

  43. Respondek G, Roeber S, Kretzschmar H, Troakes C, Al-Sarraj S, Gelpi E et al (2013) Accuracy of the National Institute for Neurological Disorders and Stroke/Society for Progressive Supranuclear Palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov Disord: Off J Mov Disord Soc 28(4):504–509

    Article  Google Scholar 

  44. Osaki Y, Ben-Shlomo Y, Lees AJ, Daniel SE, Colosimo C, Wenning G et al (2004) Accuracy of clinical diagnosis of progressive supranuclear palsy. Mov Disord 19(2):181–189

    Article  PubMed  Google Scholar 

  45. Birdi S, Rajput AH, Fenton M, Donat JR, Rozdilsky B, Robinson C et al (2002) Progressive supranuclear palsy diagnosis and confounding features: report on 16 autopsied cases. Mov Disord: Off J Mov Disord Soc 17(6):1255–1264

    Article  Google Scholar 

  46. Williams DR, de Silva R, Paviour DC, Pittman A, Watt HC, Kilford L et al (2005) Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 128(Pt 6):1247–1258

    Article  PubMed  Google Scholar 

  47. Williams DR, Holton JL, Strand K, Revesz T, Lees AJ (2007) Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov Disord: Off J Mov Disord Soc 22(15):2235–2241

    Article  Google Scholar 

  48. Boeve B, Dickson D, Duffy J, Bartleson J, Trenerry M, Petersen R (2003) Progressive nonfluent aphasia and subsequent aphasic dementia associated with atypical progressive supranuclear palsy pathology. Eur Neurol 49(2):72–78

    Article  CAS  PubMed  Google Scholar 

  49. Boeve BF, Maraganore D, Parisi JE, Ahlskog J, Graff-Radford N, Caselli RJ et al (1999) Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 53(4):795

    Article  CAS  PubMed  Google Scholar 

  50. Josephs KA, Katsuse O, Beccano-Kelly DA, Lin W-L, Uitti RJ, Fujino Y et al (2006) Atypical progressive supranuclear palsy with corticospinal tract degeneration. J Neuropathol Exp Neurol 65(4):396–405

    Article  PubMed  Google Scholar 

  51. Koga S, Josephs KA, Ogaki K, Labbé C, Uitti RJ, Graff-Radford N et al (2016) Cerebellar ataxia in progressive supranuclear palsy: an autopsy study of PSP-C. Mov Disord 31(5):653–662

    Article  PubMed  PubMed Central  Google Scholar 

  52. Josephs KA, Duffy JR (2008) Apraxia of speech and nonfluent aphasia: a new clinical marker for corticobasal degeneration and progressive supranuclear palsy. Curr Opin Neurol 21(6):688–692

    Article  PubMed  Google Scholar 

  53. Hassan A, Parisi JE, Josephs KA (2012) Autopsy-proven progressive supranuclear palsy presenting as behavioral variant frontotemporal dementia. Neurocase 18(6):478–488

    Article  PubMed  Google Scholar 

  54. Han HJ, Kim H, Park JH, Shin HW, Kim GU, Kim DS et al (2010) Behavioral changes as the earliest clinical manifestation of progressive supranuclear palsy. J Clin Neurol (Seoul, Korea) 6(3):148–151

    Article  Google Scholar 

  55. Ling H, O’Sullivan SS, Holton JL, Revesz T, Massey LA, Williams DR et al (2010) Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 133(7):2045–2057

    Article  PubMed  Google Scholar 

  56. Ling H, De Silva R, Massey L, Courtney R, Hondhamuni G, Bajaj N et al (2014) Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant. Neuropathol Appl Neurobiol 40(2):149–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nagao S, Yokota O, Nanba R, Takata H, Haraguchi T, Ishizu H et al (2012) Progressive supranuclear palsy presenting as primary lateral sclerosis but lacking parkinsonism, gaze palsy, aphasia, or dementia. J Neurol Sci 323(1–2):147–153

    Article  PubMed  Google Scholar 

  58. Respondek G, Höglinger G (2016) The phenotypic spectrum of progressive supranuclear palsy. Parkinsonism Relat Disord 22:S34–SS6

    Article  PubMed  Google Scholar 

  59. Hughes AJ, Daniel SE, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125(Pt 4):861–870

    Article  PubMed  Google Scholar 

  60. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Williams DR, Holton JL, Strand C, Pittman A, de Silva R, Lees AJ et al (2007) Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130(6):1566–1576

    Article  PubMed  Google Scholar 

  62. Williams DR, Lees AJ (2010) What features improve the accuracy of the clinical diagnosis of progressive supranuclear palsy-parkinsonism (PSP-P)? Mov Disord 25(3):357–362

    Article  PubMed  Google Scholar 

  63. Adler CH, Beach TG, Hentz JG, Shill HA, Caviness JN, Driver-Dunckley E et al (2014) Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology 83(5):406–412

    Article  PubMed  PubMed Central  Google Scholar 

  64. Richardson J, Steele J, Olszewski J (1963) Supranuclear opthalmoplegia, pseudobulbar palsy, nuchal dystonia and dementia. A clinical report on eight cases of “heterogeneous system degeneration”. Trans Am Neurol Assoc 88:25

    CAS  PubMed  Google Scholar 

  65. Nieforth KA, Golbe LI (1993) Retrospective study of drug response in 87 patients with progressive supranuclear palsy. Clin Neuropharmacol 16(4):338–346

    Article  CAS  PubMed  Google Scholar 

  66. Tan E, Chan L, Wong M (2003) Levodopa-induced oromandibular dystonia in progressive supranuclear palsy. Clin Neurol Neurosurg 105(2):132–134

    Article  CAS  PubMed  Google Scholar 

  67. Lang AE (2005) Treatment of progressive supranuclear palsy and corticobasal degeneration. Mov Disord: Off J Mov Disord Soc 20(S12):S83–S91

    Article  Google Scholar 

  68. Litvan I, Bhatia KP, Burn DJ, Goetz CG, Lang AE, McKeith I et al (2003) Movement disorders society scientific issues committee report: SIC task force appraisal of clinical diagnostic criteria for parkinsonian disorders. Mov Disord: Off J Mov Disord Soc 18(5):467–486

    Article  Google Scholar 

  69. Donker Kaat L, Boon AJ, Kamphorst W, Ravid R, Duivenvoorden HJ, van Swieten JC (2007) Frontal presentation in progressive supranuclear palsy. Neurology 69(8):723–729

    Article  CAS  PubMed  Google Scholar 

  70. Josephs KA, Petersen RC, Knopman DS, Boeve BF, Whitwell JL, Duffy JR et al (2006) Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 66(1):41–48

    Article  CAS  PubMed  Google Scholar 

  71. Mochizuki A, Ueda Y, Komatsuzaki Y, Tsuchiya K, Arai T, Shoji S (2003) Progressive supranuclear palsy presenting with primary progressive aphasia--clinicopathological report of an autopsy case. Acta Neuropathol 105(6):610–614

    Article  CAS  PubMed  Google Scholar 

  72. Tsuboi Y, Josephs KA, Boeve BF, Litvan I, Caselli RJ, Caviness JN et al (2005) Increased tau burden in the cortices of progressive supranuclear palsy presenting with corticobasal syndrome. Mov Disord 20(8):982–988

    Article  PubMed  Google Scholar 

  73. Compta Y, Valldeoriola F, Tolosa E, Rey MJ, Martí MJ, Valls-Solé J (2007) Long lasting pure freezing of gait preceding progressive supranuclear palsy: a clinicopathological study. Mov Disord 22(13):1954–1958

    Article  PubMed  Google Scholar 

  74. Facheris MF, Maniak S, Scaravilli F, Schüle B, Klein C, Pramstaller PP (2008) Pure akinesia as initial presentation of PSP: a clinicopathological study. Parkinsonism Relat Disord 14(6):517–519

    Article  PubMed  Google Scholar 

  75. Kurz C, Ebersbach G, Respondek G, Giese A, Arzberger T, Höglinger GU (2016) An autopsy-confirmed case of progressive supranuclear palsy with predominant postural instability. Acta Neuropathol Commun 4(1):120

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kanazawa M, Shimohata T, Toyoshima Y, Tada M, Kakita A, Morita T et al (2009) Cerebellar involvement in progressive supranuclear palsy: a clinicopathological study. Mov Disord: Off J Mov Disord Soc 24(9):1312–1318

    Article  Google Scholar 

  77. Kanazawa M, Tada M, Onodera O, Takahashi H, Nishizawa M, Shimohata T (2013) Early clinical features of patients with progressive supranuclear palsy with predominant cerebellar ataxia. Parkinsonism Relat Disord 19(12):1149–1151

    Article  PubMed  Google Scholar 

  78. Ali F, Martin PR, Botha H, Ahlskog JE, Bower JH, Masumoto JY et al (2019) Sensitivity and specificity of diagnostic criteria for progressive supranuclear palsy. Mov Disord 34(8):1144–1153

    Google Scholar 

  79. Ali F, Botha H, Whitwell JL, Josephs KA (2019) Utility of the movement disorders society criteria for progressive supranuclear palsy in clinical practice. Mov Disord Clin Pract 6(6):436–439

    Article  PubMed  PubMed Central  Google Scholar 

  80. Shoeibi A, Litvan I, Juncos JL, Bordelon Y, Riley D, Standaert D et al (2019) Are the International Parkinson disease and Movement Disorder Society progressive supranuclear palsy (IPMDS-PSP) diagnostic criteria accurate enough to differentiate common PSP phenotypes? Parkinsonism Relat Disord. In Press

    Google Scholar 

  81. Ahmed Z, Josephs KA, Gonzalez J, DelleDonne A, Dickson DW (2008) Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 131(Pt 2):460–472

    Article  PubMed  Google Scholar 

  82. Dickson DW, Ahmed Z, Algom AA, Tsuboi Y, Josephs KA (2010) Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 23(4):394–400

    Article  PubMed  Google Scholar 

  83. Ishizawa K, Lin WL, Tiseo P, Honer WG, Davies P, Dickson DW (2000) A qualitative and quantitative study of grumose degeneration in progressive supranuclear palsy. J Neuropathol Exp Neurol 59(6):513–524

    Article  CAS  PubMed  Google Scholar 

  84. Ishizawa K, Dickson DW (2001) Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J Neuropathol Exp Neurol 60(6):647–657

    Article  CAS  PubMed  Google Scholar 

  85. Gibb WR, Luthert PJ, Marsden CD (1989) Corticobasal degeneration. Brain 112(Pt 5):1171–1192

    Article  PubMed  Google Scholar 

  86. Dickson DW, Yen SH, Suzuki KI, Davies P, Garcia JH, Hirano A (1986) Ballooned neurons in select neurodegenerative diseases contain phosphorylated neurofilament epitopes. Acta Neuropathol 71(3–4):216–223

    Article  CAS  PubMed  Google Scholar 

  87. Rebeiz JJ, Kolodny EH, Richardson EP Jr (1967) Corticodentatonigral degeneration with neuronal achromasia: a progressive disorder of late adult life. Trans Am Neurol Assoc 92:23–26

    CAS  PubMed  Google Scholar 

  88. Ksiezak-Reding H, Morgan K, Mattiace LA, Davies P, Liu WK, Yen SH et al (1994) Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration. Am J Pathol 145(6):1496–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Mori H, Nishimura M, Namba Y, Oda M (1994) Corticobasal degeneration: a disease with widespread appearance of abnormal tau and neurofibrillary tangles, and its relation to progressive supranuclear palsy. Acta Neuropathol 88(2):113–121

    Article  CAS  PubMed  Google Scholar 

  90. Uchihara T, Mitani K, Mori H, Kondo H, Yamada M, Ikeda K (1994) Abnormal cytoskeletal pathology peculiar to corticobasal degeneration is different from that of Alzheimer’s disease or progressive supranuclear palsy. Acta Neuropathol 88(4):379–383

    Article  CAS  PubMed  Google Scholar 

  91. Feany MB, Dickson DW (1995) Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 146(6):1388–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Kouri N, Murray ME, Hassan A, Rademakers R, Uitti RJ, Boeve BF et al (2011) Neuropathological features of corticobasal degeneration presenting as corticobasal syndrome or Richardson syndrome. Brain 134(Pt 11):3264–3275

    Article  PubMed  PubMed Central  Google Scholar 

  93. Armstrong MJ, Litvan I, Lang AE, Bak TH, Bhatia KP, Borroni B et al (2013) Criteria for the diagnosis of corticobasal degeneration. Neurology 80(5):496–503

    Article  PubMed  PubMed Central  Google Scholar 

  94. Boeve BF (2011) The multiple phenotypes of corticobasal syndrome and corticobasal degeneration: implications for further study. J Mol Neuro: MN 45(3):350–353

    Article  CAS  Google Scholar 

  95. Lee SE, Rabinovici GD, Mayo MC, Wilson SM, Seeley WW, DeArmond SJ et al (2011) Clinicopathological correlations in corticobasal degeneration. Ann Neurol 70(2):327–340

    Article  PubMed  PubMed Central  Google Scholar 

  96. Schneider J, Watts R, Gearing M, Brewer R, Mirra S (1997) Corticobasal degeneration neuropathologic and clinical heterogeneity. Neurology 48(4):959–968

    Article  CAS  PubMed  Google Scholar 

  97. Hu WT, Rippon GW, Boeve BF, Knopman DS, Petersen RC, Parisi JE et al (2009) Alzheimer’s disease and corticobasal degeneration presenting as corticobasal syndrome. Mov Disord: Off J Mov Disord Soc 24(9):1375–1379

    Article  Google Scholar 

  98. Chand P, Grafman J, Dickson D, Ishizawa K, Litvan I (2006) Alzheimer’s disease presenting as corticobasal syndrome. Mov Disord: Off J Mov Disord Soc 21(11):2018–2022

    Article  Google Scholar 

  99. Wenning GK, Litvan I, Jankovic J, Granata R, Mangone CA, McKee A et al (1998) Natural history and survival of 14 patients with corticobasal degeneration confirmed at postmortem examination. J Neurol Neurosurg Psychiatry 64(2):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Litvan I, Agid Y, Goetz C, Jankovic J, Wenning GK, Brandel JP et al (1997) Accuracy of the clinical diagnosis of corticobasal degeneration: a clinicopathologic study. Neurology 48(1):119–125

    Article  CAS  PubMed  Google Scholar 

  101. Togasaki DM, Tanner CM (2000) Epidemiologic aspects. Adv Neurol 82:53–59

    CAS  PubMed  Google Scholar 

  102. Tsuchiya K, Murayama S, Mitani K, Oda T, Arima K, Mimura M et al (2005) Constant and severe involvement of Betz cells in corticobasal degeneration is not consistent with pyramidal signs: a clinicopathological study of ten autopsy cases. Acta Neuropathol 109(4):353–366

    Article  PubMed  Google Scholar 

  103. Josephs KA, Rossor MN (2004) The alien limb. Pract Neurol 4(1):44–45

    Article  Google Scholar 

  104. Grimes DA, Lang AE, Bergeron CB (1999) Dementia as the most common presentation of cortical-basal ganglionic degeneration. Neurology 53(9):1969–1974

    Article  CAS  PubMed  Google Scholar 

  105. Kompoliti K, Goetz C, Boeve BF, Maraganore D, Ahlskog J, Marsden C et al (1998) Clinical presentation and pharmacological therapy in corticobasal degeneration. Arch Neurol 55(7):957–961

    Article  CAS  PubMed  Google Scholar 

  106. Boeve BF, Lang AE, Litvan I (2003) Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 54(S5):S15–SS9

    Article  Google Scholar 

  107. Murray R, Neumann M, Forman M, Farmer J, Massimo L, Rice A et al (2007) Cognitive and motor assessment in autopsy-proven corticobasal degeneration. Neurology 68(16):1274–1283

    Article  CAS  PubMed  Google Scholar 

  108. Jacobs DH, Adair JC, Macauley B, Gold M, Rothi LJG, Heilman KM (1999) Apraxia in corticobasal degeneration. Brain Cogn 40(2):336–354

    Article  CAS  PubMed  Google Scholar 

  109. Reich SG, Grill SE (2009) Corticobasal degeneration. Curr Treat Options Neurol 11(3):179

    Article  PubMed  Google Scholar 

  110. Spotorno N, McMillan CT, Powers JP, Clark R, Grossman M (2014) Counting or chunking? Mathematical and heuristic abilities in patients with corticobasal syndrome and posterior cortical atrophy. Neuropsychologia 64:176–183

    Article  PubMed  PubMed Central  Google Scholar 

  111. Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE et al (2006) Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129(Pt 6):1385–1398

    Article  PubMed  Google Scholar 

  112. Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ling H, Gelpi E, Davey K, Jaunmuktane Z, Mok KY, Jabbari E et al Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathol:1–18

    Google Scholar 

  114. Rodriguez-Porcel F, Lowder L, Rademakers R, Ravenscroft T, Ghetti B, Hagen MC et al (2016) Fulminant corticobasal degeneration: Agrypnia excitata in corticobasal syndrome. Neurology 86(12):1164–1166

    Article  PubMed  PubMed Central  Google Scholar 

  115. Litvan I, Lees PS, Cunningham CR, Rai SN, Cambon AC, Standaert DG et al (2016) Environmental and occupational risk factors for progressive supranuclear palsy: case-control study. Mov Disord 31(5):644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kelley KD, Checkoway H, Hall DA, Reich SG, Cunningham C, Litvan I (2018) Traumatic brain injury and firearm use and risk of progressive supranuclear palsy among veterans. Front Neurol 9:474

    Article  PubMed  PubMed Central  Google Scholar 

  117. Caparros-Lefebvre D, Golbe LI, Deramecourt V, Maurage CA, Huin V, Buee-Scherrer V et al (2015) A geographical cluster of progressive supranuclear palsy in northern France. Neurology 85(15):1293–1300

    Article  PubMed  PubMed Central  Google Scholar 

  118. Caparros-Lefebvre D, Sergeant N, Lees A, Camuzat A, Daniel S, Lannuzel A et al (2002) Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 125(Pt 4):801–811

    Article  PubMed  Google Scholar 

  119. Lannuzel A, Ruberg M, Michel PP (2008) Atypical parkinsonism in the Caribbean island of Guadeloupe: etiological role of the mitochondrial complex I inhibitor annonacin. Mov Disord: Off J Mov Disord Soc 23(15):2122–2128

    Article  Google Scholar 

  120. Park HK, Ilango S, Charriez CM, Checkoway H, Riley D, Standaert DG et al (2018) Lifetime exposure to estrogen and progressive supranuclear palsy: environmental and genetic PSP study. Mov Disord 33(3):468–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kouri N, Ross OA, Dombroski B, Younkin CS, Serie DJ, Soto-Ortolaza A et al (2015) Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun 6:7247

    Article  CAS  PubMed  Google Scholar 

  122. Rohrer JD, Paviour D, Vandrovcova J, Hodges J, De Silva R, Rossor MN (2011) Novel L284R MAPT mutation in a family with an autosomal dominant progressive supranuclear palsy syndrome. Neurodegener Dis 8(3):149–152

    Article  CAS  PubMed  Google Scholar 

  123. Ogaki K, Li Y, Takanashi M, Ishikawa K-I, Kobayashi T, Nonaka T et al (2013) Analyses of the MAPT, PGRN, and C9orf72 mutations in Japanese patients with FTLD, PSP, and CBS. Parkinsonism Relat Disord 19(1):15–20

    Article  PubMed  Google Scholar 

  124. Ahmed S, Fairen MD, Sabir MS, Pastor P, Ding J, Ispierto L et al (2019) MAPT p.V363I mutation: a rare cause of corticobasal degeneration. Neurology Genetics 5(4):e347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Boeve BF, Hutton M (2008) Refining frontotemporal dementia with parkinsonism linked to chromosome 17: introducing FTDP-17 (MAPT) and FTDP-17 (PGRN). Arch Neurol 65(4):460–464

    Article  PubMed  PubMed Central  Google Scholar 

  126. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J et al (1999) Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 8(4):711–715

    Article  CAS  PubMed  Google Scholar 

  127. Houlden H, Baker M, Morris H, MacDonald N (2001) Pickering–Brown S, Adamson J, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 56(12):1702–1706

    Article  CAS  PubMed  Google Scholar 

  128. Höglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang L-S, Klei L et al (2011) Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat Genet 43(7):699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Yokoyama JS, Karch CM, Fan CC, Bonham LW, Kouri N, Ross OA et al (2017) Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol 133(5):825–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wendler F, Tooze S (2001) Syntaxin 6: the promiscuous behaviour of a SNARE protein. Traffic 2(9):606–611

    Article  CAS  PubMed  Google Scholar 

  131. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell 5(5):897–904

    Article  CAS  PubMed  Google Scholar 

  132. Yuan SH, Hiramatsu N, Liu Q, Sun XV, Lenh D, Chan P et al (2018) Tauopathy-associated PERK alleles are functional hypomorphs that increase neuronal vulnerability to ER stress. Hum Mol Genet 27(22):3951–3963

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Sanchez-Contreras MY, Kouri N, Cook CN, Serie DJ, Heckman MG, Finch NA et al (2018) Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Mol Neurodegener 13(1):37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Albers DS, Augood SJ, Martin DM, Standaert DG, Vonsattel JPG, Beal MF (1999) Evidence for oxidative stress in the subthalamic nucleus in progressive supranuclear palsy. J Neurochem 73(2):881–884

    Article  CAS  PubMed  Google Scholar 

  135. Albers DS, Augood SJ, Park LC, Browne SE, Martin DM, Adamson J et al (2000) Frontal lobe dysfunction in progressive supranuclear palsy: evidence for oxidative stress and mitochondrial impairment. J Neurochem 74(2):878–881

    Article  CAS  PubMed  Google Scholar 

  136. Albers DS, Swerdlow RH, Manfredi G, Gajewski C, Yang L, Parker WD Jr et al (2001) Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Exp Neurol 168(1):196–198

    Article  CAS  PubMed  Google Scholar 

  137. Park LC, Albers DS, Xu H, Lindsay JG, Beal MF, Gibson GE (2001) Mitochondrial impairment in the cerebellum of the patients with progressive supranuclear palsy. J Neurosci Res 66(5):1028–1034

    Article  CAS  PubMed  Google Scholar 

  138. Albers DS, Beal MF (2002) Mitochondrial dysfunction in progressive supranuclear palsy. Neurochem Int 40(6):559–564

    Article  CAS  PubMed  Google Scholar 

  139. Cantuti-Castelvetri I, Keller-McGandy CE, Albers DS, Beal MF, Vonsattel J-P, Standaert DG et al (2002) Expression and activity of antioxidants in the brain in progressive supranuclear palsy. Brain Res 930(1–2):170–181

    Article  CAS  PubMed  Google Scholar 

  140. Martinelli P, Scaglione C, Lodi R, Iotti S, Barbiroli B (2000) Deficit of brain and skeletal muscle bioenergetics in progressive supranuclear palsy shown in vivo by phosphorus magnetic resonance spectroscopy. Mov Disord 15(5):889–893

    Article  CAS  PubMed  Google Scholar 

  141. Fernandez-Botran R, Ahmed Z, Crespo FA, Gatenbee C, Gonzalez J, Dickson DW et al (2011) Cytokine expression and microglial activation in progressive supranuclear palsy. Parkinsonism Relat Disord 17(9):683–688

    Article  PubMed  PubMed Central  Google Scholar 

  142. Starhof C, Winge K, Heegaard NHH, Skogstrand K, Friis S, Hejl A (2018) Cerebrospinal fluid pro-inflammatory cytokines differentiate parkinsonian syndromes. J Neuroinflammation 15(1):305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sian J, Dexter DT, Lees AJ, Daniel S, Agid Y, Javoy-Agid F et al (1994) Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 36(3):348–355

    Article  CAS  Google Scholar 

  144. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM-Y (2013) Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci 33(3):1024–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Clavaguera F, Lavenir I, Falcon B, Frank S, Goedert M, Tolnay M (2013) “Prion-like” templated misfolding in tauopathies. Brain Pathol 23(3):342–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J et al (2013) Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci 110(23):9535–9540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Sanders DW, Kaufman SK, DeVos SL, Sharma AM, Mirbaha H, Li A et al (2014) Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82(6):1271–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Probst A, Götz J, Wiederhold K, Tolnay M, Mistl C, Jaton A et al (2000) Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathol 99(5):469–481

    Article  CAS  PubMed  Google Scholar 

  149. Dujardin K, Defebvre L, Duhamel A, Lecouffe P, Rogelet P, Steinling M et al (2004) Cognitive and SPECT characteristics predict progression of Parkinson’s disease in newly diagnosed patients. J Neurol 251(11):1383–1392

    Article  PubMed  Google Scholar 

  150. Clavaguera F, Hench J, Lavenir I, Schweighauser G, Frank S, Goedert M et al (2014) Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol 127(2):299–301

    Article  PubMed  Google Scholar 

  151. Nishimura M, Namba Y, Ikeda K, Oda M (1992) Glial fibrillary tangles with straight tubules in the brains of patients with progressive supranuclear palsy. Neurosci Lett 143(1–2):35–38

    Article  CAS  PubMed  Google Scholar 

  152. Yamada T, McGeer P, McGeer E (1992) Appearance of paired nucleated, tau-positive glia in patients with progressive supranuclear palsy brain tissue. Neurosci Lett 135(1):99–102

    Article  CAS  PubMed  Google Scholar 

  153. Kato N, Arai K, Hattori T (2003) Study of the rostral midbrain atrophy in progressive supranuclear palsy. J Neurol Sci 210(1–2):57–60

    Article  PubMed  Google Scholar 

  154. Adachi M, KAWANAMI T, OHSHIMA H, Sugai Y, Hosoya T (2004) Morning glory sign: a particular MR finding in progressive supranuclear palsy. Magn Reson Med Sci 3(3):125–132

    Article  PubMed  Google Scholar 

  155. Massey LA, Micallef C, Paviour DC, O’sullivan SS, Ling H, Williams DR et al (2012) Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord 27(14):1754–1762

    Article  PubMed  Google Scholar 

  156. Massey LA, Micallef C, Paviour DC, O’Sullivan SS, Ling H, Williams DR et al (2012) Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov Disord: Off J Mov Disord Soc 27(14):1754–1762

    Article  Google Scholar 

  157. Whitwell JL, Jack CR Jr, Parisi JE, Gunter JL, Weigand SD, Boeve BF et al (2013) Midbrain atrophy is not a biomarker of progressive supranuclear palsy pathology. Eur J Neurol 20(10):1417–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Massey LA, Jager HR, Paviour DC, O’Sullivan SS, Ling H, Williams DR et al (2013) The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology 80(20):1856–1861

    Article  PubMed  PubMed Central  Google Scholar 

  159. Quattrone A, Nicoletti G, Messina D, Fera F, Condino F, Pugliese P et al (2008) MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 246(1):214–221

    Article  PubMed  Google Scholar 

  160. Moller L, Kassubek J, Sudmeyer M, Hilker R, Hattingen E, Egger K et al (2017) Manual MRI morphometry in parkinsonian syndromes. Mov Disord: Off J Mov Disord Soc 32(5):778–782

    Article  Google Scholar 

  161. Nigro S, Arabia G, Antonini A, Weis L, Marcante A, Tessitore A et al (2017) Magnetic Resonance Parkinsonism Index: diagnostic accuracy of a fully automated algorithm in comparison with the manual measurement in a large Italian multicentre study in patients with progressive supranuclear palsy. Eur Radiol 27(6):2665–2675

    Article  PubMed  Google Scholar 

  162. Zanigni S, Calandra-Buonaura G, Manners DN, Testa C, Gibertoni D, Evangelisti S et al (2016) Accuracy of MR markers for differentiating Progressive Supranuclear Palsy from Parkinson’s disease. NeuroImage Clinical 11:736–742

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hussl A, Mahlknecht P, Scherfler C, Esterhammer R, Schocke M, Poewe W et al (2010) Diagnostic accuracy of the magnetic resonance Parkinsonism index and the midbrain-to-pontine area ratio to differentiate progressive supranuclear palsy from Parkinson’s disease and the Parkinson variant of multiple system atrophy. Mov Disord: Off J Mov Disord Soc 25(14):2444–2449

    Article  Google Scholar 

  164. Whitwell JL, Master AV, Avula R, Kantarci K, Eggers SD, Edmonson HA et al (2011) Clinical correlates of white matter tract degeneration in progressive supranuclear palsy. Arch Neurol 68(6):753–760

    Article  PubMed  PubMed Central  Google Scholar 

  165. Whitwell JL, Avula R, Master A, Vemuri P, Senjem ML, Jones DT et al (2011) Disrupted thalamocortical connectivity in PSP: a resting-state fMRI, DTI, and VBM study. Parkinsonism Relat Disord 17(8):599–605

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gardner RC, Boxer AL, Trujillo A, Mirsky JB, Guo CC, Gennatas ED et al (2013) Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann Neurol 73(5):603–616

    Article  PubMed  PubMed Central  Google Scholar 

  167. Josephs KA, Whitwell JL, Dickson DW, Boeve BF, Knopman DS, Petersen RC et al (2008) Voxel-based morphometry in autopsy proven PSP and CBD. Neurobiol Aging 29(2):280–289

    Article  PubMed  Google Scholar 

  168. Gröschel K, Hauser T-K, Luft A, Patronas N, Dichgans J, Litvan I et al (2004) Magnetic resonance imaging-based volumetry differentiates progressive supranuclear palsy from corticobasal degeneration. NeuroImage 21(2):714–724

    Article  PubMed  Google Scholar 

  169. Hauser RA, Murtaugh FR, Akhter K, Gold M, Olanow C (1996) Magnetic resonance imaging of corticobasal degeneration. J Neuroimaging 6(4):222–226

    Article  CAS  PubMed  Google Scholar 

  170. Koyama M, Yagishita A, Nakata Y, Hayashi M, Bandoh M, Mizutani T (2007) Imaging of corticobasal degeneration syndrome. Neuroradiology 49(11):905–912

    Article  PubMed  Google Scholar 

  171. Boxer AL, Geschwind MD, Belfor N, Gorno-Tempini ML, Schauer GF, Miller BL et al (2006) Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch Neurol 63(1):81–86

    Article  PubMed  Google Scholar 

  172. Josephs KA, Tang-Wai DF, Edland SD, Knopman DS, Dickson DW, Parisi JE et al (2004) Correlation between antemortem magnetic resonance imaging findings and pathologically confirmed corticobasal degeneration. Arch Neurol 61(12):1881–1884

    Article  PubMed  Google Scholar 

  173. Hassan A, Whitwell JL, Boeve BF, Jack CR Jr, Parisi JE, Dickson DW et al (2010) Symmetric corticobasal degeneration (S-CBD). Parkinsonism Relat Disord 16(3):208–214

    Article  PubMed  Google Scholar 

  174. Josephs KA, Whitwell JL, Boeve BF, Knopman DS, Petersen RC, Hu WT et al (2010) Anatomical differences between CBS-corticobasal degeneration and CBS-Alzheimer’s disease. Mov Disord: Off J Mov Disord Soc 25(9):1246–1252

    Article  Google Scholar 

  175. Whitwell JL, Jack CR Jr, Boeve BF, Parisi JE, Ahlskog JE, Drubach DA et al (2010) Imaging correlates of pathology in corticobasal syndrome. Neurology 75(21):1879–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. McMillan CT, Boyd C, Gross RG, Weinstein J, Firn K, Toledo JB et al (2016) Multimodal imaging evidence of pathology-mediated disease distribution in corticobasal syndrome. Neurology 87(12):1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Whitwell JL, Jack CR, Parisi JE, Knopman DS, Boeve BF, Petersen RC et al (2011) Imaging signatures of molecular pathology in behavioral variant frontotemporal dementia. J Mol Neurosci 45(3):372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Whitwell JL, Josephs KA (2011) Neuroimaging in frontotemporal lobar degeneration--predicting molecular pathology. Nat Rev Neurol 8(3):131–142

    Article  CAS  Google Scholar 

  179. McMillan CT, Irwin DJ, Avants BB, Powers J, Cook PA, Toledo JB et al (2013) White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration. J Neurol Neurosurg Psychiatry 84(9):949–955

    Article  PubMed  Google Scholar 

  180. Botha H, Whitwell JL, Madhaven A, Senjem ML, Lowe V, Josephs KA (2014) The pimple sign of progressive supranuclear palsy syndrome. Parkinsonism Relat Disord 20(2):180–185

    Article  PubMed  Google Scholar 

  181. Zalewski N, Botha H, Whitwell JL, Lowe V, Dickson DW, Josephs KA (2014) FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J Neurol 261(4):710–716

    Article  CAS  PubMed  Google Scholar 

  182. Villemagne VL, Fodero-Tavoletti MT, Masters CL, Rowe CC (2015) Tau imaging: early progress and future directions. Lancet Neurol 14(1):114–124

    Article  PubMed  Google Scholar 

  183. Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG et al (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78(5):787–800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Passamonti L, Vazquez Rodriguez P, Hong YT, Allinson KS, Williamson D, Borchert RJ et al (2017) 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain 140(3):781–791

    PubMed  PubMed Central  Google Scholar 

  185. Pontecorvo MJ, Devous Sr MD, Navitsky M, Lu M, Salloway S, Schaerf FW et al (2017) Relationships between flortaucipir PET tau binding and amyloid burden, clinical diagnosis, age and cognition. Brain 140(3):748–763

    PubMed  PubMed Central  Google Scholar 

  186. Nasrallah IM, Chen YJ, Hsieh M-K, Phillips JS, Ternes K, Stockbower GE et al (2018) 18F-Flortaucipir PET/MRI correlations in nonamnestic and amnestic variants of Alzheimer disease. J Nucl Med 59(2):299–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ossenkoppele R, Schonhaut DR, Schöll M, Lockhart SN, Ayakta N, Baker SL et al (2016) Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain 139(5):1551–1567

    Article  PubMed  PubMed Central  Google Scholar 

  188. Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE et al (2016) An autoradiographic evaluation of AV-1451 tau PET in dementia. Acta Neuropathol Commun 4(1):58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Bevan Jones WR, Cope TE, Passamonti L, Fryer TD, Hong YT, Aigbirhio F et al (2016) [18F]AV-1451 PET in behavioral variant frontotemporal dementia due to MAPT mutation. Ann Clin Trans Neurol 3(12):940–947

    Article  CAS  Google Scholar 

  190. Cho H, Choi JY, Hwang MS, Lee SH, Ryu YH, Lee MS et al (2017) Subcortical 18 F-AV-1451 binding patterns in progressive supranuclear palsy. Mov Disord: Off J Mov Disord Soc 32(1):134–140

    Article  CAS  Google Scholar 

  191. Smith R, Schain M, Nilsson C, Strandberg O, Olsson T, Hagerstrom D et al (2017) Increased basal ganglia binding of 18 F-AV-1451 in patients with progressive supranuclear palsy. Mov Disord: Off J Mov Disord Soc 32(1):108–114

    Article  CAS  Google Scholar 

  192. Whitwell JL, Lowe VJ, Tosakulwong N, Weigand SD, Senjem ML, Schwarz CG et al (2017) [18 F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov Disord: Off J Mov Disord Soc 32(1):124–133

    Article  CAS  Google Scholar 

  193. Whitwell JL, Tosakulwong N, Botha H, Ali F, Clark HM, Duffy JR et al (2020) Brain volume and flortaucipir analysis of progressive supranuclear palsy clinical variants. NeuroImage: Clinical 25:102152

    Article  Google Scholar 

  194. McMillan CT, Irwin DJ, Nasrallah I, Phillips JS, Spindler M, Rascovsky K et al (2016) Multimodal evaluation demonstrates in vivo (18)F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol 132(6):935–937

    Article  PubMed  PubMed Central  Google Scholar 

  195. Ali F, Whitwell JL, Martin PR, Senjem ML, Knopman DS, Jack CR et al (2018) [(18)F] AV-1451 uptake in corticobasal syndrome: the influence of beta-amyloid and clinical presentation. J Neurol 265(5):1079–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord: Off J Mov Disord Soc 21(1):89–93

    Article  Google Scholar 

  197. Gerhard A, Watts J, Trender-Gerhard I, Turkheimer F, Banati RB, Bhatia K et al (2004) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord: Off J Mov Disord Soc 19(10):1221–1226

    Article  Google Scholar 

  198. Arai T, Ikeda K, Akiyama H, Shikamoto Y, Tsuchiya K, Yagishita S et al (2001) Distinct isoforms of tau aggregated in neurons and glial cells in brains of patients with Pick’s disease, corticobasal degeneration and progressive supranuclear palsy. Acta Neuropathol 101(2):167–173

    Article  CAS  PubMed  Google Scholar 

  199. Urakami K, Wada K, Arai H, Sasaki H, Kanai M, Shoji M et al (2001) Diagnostic significance of tau protein in cerebrospinal fluid from patients with corticobasal degeneration or progressive supranuclear palsy. J Neurol Sci 183(1):95–98

    Article  CAS  PubMed  Google Scholar 

  200. Hall S, Öhrfelt A, Constantinescu R, Andreasson U, Surova Y, Bostrom F et al (2012) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69(11):1445–1452

    Article  PubMed  Google Scholar 

  201. Borroni B, Malinverno M, Gardoni F, Alberici A, Parnetti L, Premi E et al (2008) Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 71(22):1796–1803

    Article  CAS  PubMed  Google Scholar 

  202. Kuiperij HB, Borroni B, Verbeek MM, Gardoni F, Malinverno M, Padovani A et al (2011) Tau forms in CSF as a reliable biomarker for progressive supranuclear palsy. Neurology 76(16):1443

    Article  PubMed  Google Scholar 

  203. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T et al (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol:1

    Google Scholar 

  204. Hansson O, Janelidze S, Hall S, Magdalinou N, Lees AJ, Andreasson U et al (2017) Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 88(10):930–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Holmberg B, Rosengren L, Karlsson JE, Johnels B (1998) Increased cerebrospinal fluid levels of neurofilament protein in progressive supranuclear palsy and multiple-system atrophy compared with Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 13(1):70–77

    Article  CAS  Google Scholar 

  206. Marques TM, van Rumund A, Oeckl P, Kuiperij HB, Esselink RA, Bloem BR et al (2019) Serum NFL discriminates Parkinson disease from atypical parkinsonisms. Neurology 92(13):e1479–e1e86

    Article  PubMed  Google Scholar 

  207. Sako W, Murakami N, Izumi Y, Kaji R (2015) Neurofilament light chain level in cerebrospinal fluid can differentiate Parkinson’s disease from atypical parkinsonism: evidence from a meta-analysis. J Neurol Sci 352(1–2):84–87

    Article  CAS  PubMed  Google Scholar 

  208. Rojas JC, Karydas A, Bang J, Tsai RM, Blennow K, Liman V et al (2016) Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 3(3):216–225

    CAS  Google Scholar 

  209. Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius A et al (2016) Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med 54(10):1655–1661

    Article  CAS  PubMed  Google Scholar 

  210. Groveman BR, Orrù CD, Hughson AG, Raymond LD, Zanusso G, Ghetti B et al (2018) Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol Commun 6(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  211. Kraus A, Saijo E, Metrick MA 2nd, Newell K, Sigurdson CJ, Zanusso G et al (2019) Seeding selectivity and ultrasensitive detection of tau aggregate conformers of Alzheimer disease. Acta Neuropathol 137(4):585–598

    Article  PubMed  Google Scholar 

  212. Saijo E, Ghetti B, Zanusso G, Oblak A, Furman JL, Diamond MI et al (2017) Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol 133(5):751–765

    Article  CAS  PubMed  Google Scholar 

  213. Saijo E, Metrick MA, Koga S, Parchi P, Litvan I, Spina S et al (2020) 4-repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol 139(1):63–77

    Article  CAS  PubMed  Google Scholar 

  214. Riley D, Lang A, Ae L, Resch L, Ashby P, Hornykiewicz O et al (1990) Cortical-basal ganglionic degeneration. Neurology 40(8):1203

    Article  CAS  PubMed  Google Scholar 

  215. Jackson JA, Jankovic J, Ford J (1983) Progressive supranuclear palsy: clinical features and response to treatment in 16 patients. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 13(3):273–278

    Article  CAS  Google Scholar 

  216. Stowe R, Ives N, Clarke CE, Ferreira J, Hawker RJ, Shah L et al (2008) Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst Rev (2):CD006564

    Google Scholar 

  217. Kompoliti K, Goetz C, Litvan I, Jellinger K, Verny M (1998) Pharmacological therapy in progressive supranuclear palsy. Arch Neurol 55(8):1099–1102

    Article  CAS  PubMed  Google Scholar 

  218. Engel PA (1996) Treatment of progressive supranuclear palsy with amitriptyline: therapeutic and toxic effects. J Am Geriatr Soc 44(9):1072–1074

    Article  CAS  PubMed  Google Scholar 

  219. Rajrut A, Uitti R, Fenton M, George D (1997) Amantadine effectiveness in multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 3(4):211–214

    Article  CAS  PubMed  Google Scholar 

  220. Daniele A, Moro E, Bentivoglio AR (1999) Zolpidem in progressive supranuclear palsy. N Engl J Med 341(7):543–544

    Article  CAS  PubMed  Google Scholar 

  221. Cotter C, Armytage T, Crimmins D (2010) The use of zolpidem in the treatment of progressive supranuclear palsy. J Clin Neurosci 17(3):385–386

    Article  CAS  PubMed  Google Scholar 

  222. Mayr BJ, Bonelli RM, Niederwieser G, Költringer P, Reisecker F (2002) Zolpidem in progressive supranuclear palsy. Eur J Neurol 9(2):184–185

    Article  PubMed  Google Scholar 

  223. Müller J, Wenning G, Wissel J, Seppi K, Poewe W (2002) Botulinum toxin treatment in atypical parkinsonian disorders associated with disabling focal dystonia. J Neurol 249(3):300–304

    Article  PubMed  Google Scholar 

  224. Piccione F, Mancini E, Tonin P, Bizzarini M (1997) Botulinum toxin treatment of apraxia of eyelid opening in progressive supranuclear palsy: report of two cases. Arch Phys Med Rehabil 78(5):525–529

    Article  CAS  PubMed  Google Scholar 

  225. Vanek Z, Jankovic J (2001) Dystonia in corticobasal degeneration. Mov Disord: Off J Mov Disord Soc 16(2):252–257

    Article  CAS  Google Scholar 

  226. Polo KB, Jabbari B (1994) Botulinum toxin-A improves the rigidity of progressive supranuclear palsy. Ann Neurol: Off J Am Neurol Assoc Child Neurol Soc 35(2):237–239

    Article  CAS  Google Scholar 

  227. Boeve BF, Josephs KA, Drubach DA (2008) Current and future management of the corticobasal syndrome and corticobasal degeneration. Handb Clin Neurol 89:533–548

    Article  PubMed  Google Scholar 

  228. Kovács T, Farsang M, Vitaszil E, Barsi P, Györke T, Szirmai I et al (2009) Levetiracetam reduces myoclonus in corticobasal degeneration: report of two cases. J Neural Transm 116(12):1631

    Article  PubMed  Google Scholar 

  229. Gómez-Caravaca MT, Cáceres-Redondo MT, Huertas-Fernández I, Vargas-González L, Carrillo F, Carballo M et al (2015) The use of botulinum toxin in the treatment of sialorrhea in parkinsonian disorders. Neurol Sci 36(2):275–279

    Article  PubMed  Google Scholar 

  230. Hyson HC, Johnson AM, Jog MS (2002) Sublingual atropine for sialorrhea secondary to parkinsonism: a pilot study. Mov Disord: Off J Mov Disord Soc 17(6):1318–1320

    Article  Google Scholar 

  231. Litvan I, Phipps M, Pharr VL, Hallett M, Grafman J, Salazar A (2001) Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology 57(3):467–473

    Article  CAS  PubMed  Google Scholar 

  232. Mendez MF, Shapira JS, McMurtray A, Licht E (2007) Preliminary findings: behavioral worsening on donepezil in patients with frontotemporal dementia. Am J Geriatr Psychiatry 15(1):84–87

    Article  PubMed  Google Scholar 

  233. Boxer AL, Knopman DS, Kaufer DI, Grossman M, Onyike C, Graf-Radford N et al (2013) Memantine in patients with frontotemporal lobar degeneration: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol 12(2):149–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Boxer AL, Lipton AM, Womack K, Merrilees J, Neuhaus J, Pavlic D et al (2009) An open label study of memantine treatment in three subtypes of frontotemporal lobar degeneration. Alzheimer Dis Assoc Disord 23(3):211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Pattee GL, Wymer JP, Lomen-Hoerth C, Appel SH, Formella AE, Pope LE (2014) An open-label multicenter study to assess the safety of dextromethorphan/quinidine in patients with pseudobulbar affect associated with a range of underlying neurological conditions. Curr Med Res Opin 30(11):2255–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Clerici I, Ferrazzoli D, Maestri R, Bossio F, Zivi I, Canesi M et al (2017) Rehabilitation in progressive supranuclear palsy: effectiveness of two multidisciplinary treatments. PLoS One 12(2):e0170927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Zampieri C, Di Fabio RP (2008) Balance and eye movement training to improve gait in people with progressive supranuclear palsy: quasi-randomized clinical trial. Phys Ther 88(12):1460–1473

    Article  PubMed  Google Scholar 

  238. Steffen TM, Boeve BF, Mollinger-Riemann LA, Petersen CM (2007) Long-term locomotor training for gait and balance in a patient with mixed progressive supranuclear palsy and corticobasal degeneration. Phys Ther 87(8):1078–1087

    Article  PubMed  Google Scholar 

  239. Henry M, Meese M, Truong S, Babiak M, Miller B, Gorno-Tempini M (2013) Treatment for apraxia of speech in nonfluent variant primary progressive aphasia. Behav Neurol 26(1–2):77–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Farrajota L, Maruta C, Maroco J, Martins IP, Guerreiro M, De Mendonca A (2012) Speech therapy in primary progressive aphasia: a pilot study. Dement Geriatr Cogn Disord Extra 2(1):321–331

    Article  Google Scholar 

  241. Wiblin L, Lee M, Burn D (2017) Palliative care and its emerging role in multiple system atrophy and progressive supranuclear palsy. Parkinsonism Relat Disord 34:7–14

    Article  PubMed  Google Scholar 

  242. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev 33(1):95–130

    Article  PubMed  Google Scholar 

  243. Leclair-Visonneau L, Rouaud T, Debilly B, Durif F, Houeto JL, Kreisler A et al (2016) Randomized placebo-controlled trial of sodium valproate in progressive supranuclear palsy. Clin Neurol Neurosurg 146:35–39

    Article  PubMed  Google Scholar 

  244. Min S-W, Chen X, Tracy TE, Li Y, Zhou Y, Wang C et al (2015) Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med 21(10):1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Yuzwa SA, Shan X, Macauley MS, Clark T, Skorobogatko Y, Vosseller K et al (2012) Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat Chem Biol 8(4):393–399

    Article  CAS  PubMed  Google Scholar 

  246. Wang AC, Jensen EH, Rexach JE, Vinters HV, Hsieh-Wilson LC (2016) Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A 113(52):15120–15125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS et al (2014) Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol 13(7):676–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Boxer AMZ, Tsai R, Koestler M, Rojas J, Ljubenkov P, Rosen H et al (2017) A phase 1B, randomized, double-blind, placebo-controlled, sequential cohort, dose-ranging study of the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy of TPI 287 (abeotaxane) in patients with primary four repeat tauopathies: corticobasal syndrome or progressive supranuclear palsy; or the secondary tauopathy, Alzheimer’s disease. J Prev Alz Dis 4(4):282–428

    Google Scholar 

  249. Zhang B, Carroll J, Trojanowski JQ, Yao Y, Iba M, Potuzak JS et al (2012) The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci Off J Soc Neurosci 32(11):3601–3611

    Article  CAS  Google Scholar 

  250. Wischik CM, Staff RT, Wischik DJ, Bentham P, Murray AD, Storey JM et al (2015) Tau aggregation inhibitor therapy: an exploratory phase 2 study in mild or moderate Alzheimer’s disease. J Alzheimer’s Disease: JAD 44(2):705–720

    Article  CAS  Google Scholar 

  251. Bensimon G, Ludolph A, Agid Y, Vidailhet M, Payan C, Leigh PN (2009) Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132(Pt 1):156–171

    Article  PubMed  Google Scholar 

  252. Apetauerova D, Scala SA, Hamill RW, Simon DK, Pathak S, Ruthazer R et al (2016) CoQ10 in progressive supranuclear palsy: a randomized, placebo-controlled, double-blind trial. Neurology(R) Neuroimmunol Neuroinflammation 3(5):e266

    Article  Google Scholar 

  253. Nuebling G, Hensler M, Paul S, Zwergal A, Crispin A, Lorenzl S (2016) PROSPERA: a randomized, controlled trial evaluating rasagiline in progressive supranuclear palsy. J Neurol 263(8):1565–1574

    Article  CAS  PubMed  Google Scholar 

  254. Stamelou M, Reuss A, Pilatus U, Magerkurth J, Niklowitz P, Eggert KM et al (2008) Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov Disord: Off J Mov Disord Soc 23(7):942–949

    Article  Google Scholar 

  255. Bright J, Hussain S, Dang V, Wright S, Cooper B, Byun T et al (2015) Human secreted tau increases amyloid-beta production. Neurobiol Aging 36(2):693–709

    Article  CAS  PubMed  Google Scholar 

  256. Qureshi IA, Tirucherai G, Ahlijanian MK, Kolaitis G, Bechtold C, Grundman M (2018) A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimer’s & Dement: Transl Res Clin Interv 4:746–755

    Article  Google Scholar 

  257. Boxer AL, Qureshi I, Ahlijanian M, Grundman M, Golbe LI, Litvan I et al (2019) Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol 18(6):549–558

    Article  CAS  PubMed  Google Scholar 

  258. Dam T, Boxer A, Golbe LI, Höglinger G, Morris HR, Litvan I et al (2018) Efficacy and safety of BIIB092 in patients with progressive supranuclear palsy: passport phase 2 study design (P6. 073). AAN Enterprises

    Google Scholar 

  259. Budur K, West T, Braunstein JB, Fogelman I, Bordelon YM, Litvan I et al (2017) Results of a phase 1, single ascending dose, placebo-controlled study of ABBV-8E12 in patients with progressive supranuclear palsy and phase 2 study design in early Alzheimer’s disease. Alzheimers Dement 13(7):P599–P600

    Google Scholar 

  260. West T, Hu Y, Verghese P, Bateman R, Braunstein J, Fogelman I et al (2017) Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis 4(04):236–241

    CAS  PubMed  Google Scholar 

  261. Boutajangout A, Ingadottir J, Davies P, Sigurdsson EM (2011) Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem 118(4):658–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Chai X, Wu S, Murray TK, Kinley R, Cella CV, Sims H et al (2011) Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 286(39):34457–34467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Sankaranarayanan S, Barten DM, Vana L, Devidze N, Yang L, Cadelina G et al (2015) Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS One 10(5):e0125614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  264. Ittner A, Bertz J, Suh LS, Stevens CH, Gotz J, Ittner LM (2015) Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem 132(1):135–145

    Article  CAS  PubMed  Google Scholar 

  265. Castillo-Carranza DL, Gerson JE, Sengupta U, Guerrero-Muñoz MJ, Lasagna-Reeves CA, Kayed R (2014) Specific targeting of tau oligomers in htau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis 40(s1):S97–S111

    Article  PubMed  CAS  Google Scholar 

  266. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V et al (2012) Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep 2:700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Igawa T, Tsunoda H, Kuramochi T, Sampei Z, Ishii S, Hattori K (2011) Engineering the variable region of therapeutic IgG antibodies. MAbs 3(3):243–252

    Article  PubMed  PubMed Central  Google Scholar 

  268. Xu H, Rosler TW, Carlsson T, de Andrade A, Fiala O, Hollerhage M et al (2014) Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther 14(5):343–351

    Article  CAS  PubMed  Google Scholar 

  269. Sud R, Geller ET, Schellenberg GD (2014) Antisense-mediated exon skipping decreases tau protein expression: a potential therapy for tauopathies. Mol Ther Nucleic Acids 3:e180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Schoch KM, DeVos SL, Miller RL, Chun SJ, Norrbom M, Wozniak DF et al (2016) Increased 4R-tau induces pathological changes in a human-tau mouse model. Neuron 90(5):941–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Litvan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coughlin, D.G., Dickson, D.W., Josephs, K.A., Litvan, I. (2021). Progressive Supranuclear Palsy and Corticobasal Degeneration. In: Ghetti, B., Buratti, E., Boeve, B., Rademakers, R. (eds) Frontotemporal Dementias . Advances in Experimental Medicine and Biology, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-51140-1_11

Download citation

Publish with us

Policies and ethics