Skip to main content

Ising-Like Model of Nanosize Spin-Crossover Molecular Crystals

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 246))

Abstract

The properties of spin-crossover nanoparticles were investigated within a framework of Ising-like model. By involving the Monte Carlo simulation tools, a thermal transition of spin-crossover solids with local random fields of various statistical characteristics and without stochastic origins has been analyzed. In three-dimensional spin-crossover crystal, the presence of fluctuations may provoke the hysteresis for the system with gradual non-hysteretic transition in contrary to the one that undergoes the first-order phase transition, in which the fluctuations play destructive role on system cooperativity vanishing the hysteresis loop. The changes of transition temperatures characterizing the systems bistable properties for 3D lattices with ferromagnetic and antiferromagnetic couplings of surface’s molecules and their dependence on its size and fluctuation strength were obtained. Also, the regions with hysteretic and non-hysteretic behavior have been found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atkins P, Overton T, Rourke JP, Weller MT, Armstrong FA (2010) Shriver and Atkins inorganic chemistry. Oxford University Press, New York

    Google Scholar 

  2. Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Wiley, Chichester

    Google Scholar 

  3. Gudyma Iu, Enachescu C, Maksymov A (2015) Kinetics of nonequilibrium transition in spin-crossover compounds. In: Nanocomposites, Nanophotonics, Nanobiotechnology, and Applications, Springer, pp 375–401

    Google Scholar 

  4. Kumar KS, Ruben M (2017) Emerging trends in spin crossover (SCO) based functional materials and devices. Coordin Chem Rev 346:176–205

    Article  Google Scholar 

  5. Iasco O, Boillot M-L, Bellec A, Guillot R, Riviere E, Mazerat S, Nowak S, Morineau D, Brosseau A, Miserque F (2017) The disentangling of hysteretic spin transition, polymorphism and metastability in bistable thin films formed by sublimation of bis (scorpionate) Fe (II) molecules. J Mater Chem C 5(42):11067–11075

    Google Scholar 

  6. Molnár G, Rat S, Salmon L, Nicolazzi W, Bousseksou A (2018) Spin crossover nanomaterials: from fundamental concepts to devices. Adv Mater 30(5):1703862

    Article  Google Scholar 

  7. Simon-Yarza T, Mielcarek A, Couvreur P, Serre C (2018) Nanoparticles of metal-organic frameworks: On the road to in vivo efficacy in biomedicine. Adv Mater 2018:1707365

    Article  Google Scholar 

  8. Salmon L, Catala L (2018) Spin-crossover nanoparticles and nanocomposite materials. Comptes Rendus Chimie 21(12):1230–1269

    Article  Google Scholar 

  9. Mikolasek M, Ridier K, Bessas D, Cerantola V, Félix G, Chaboussant G, Piedrahita-Bello M, Angulo-Cervera E, Godard L, Nicolazzi W, Salmon L, Molnár BA (2019) Phase stability of spin-crossover nanoparticles investigated by synchrotron Mössbauer spectroscopy and small-angle neutron scattering. J Phys Chem Lett 10(7):1511–1515

    Article  Google Scholar 

  10. Wajnflasz J, Pick R (1971) Transitions Low spin—High spin dans les complexes de Fe\(^{2+}\). J de Physique Colloques 32:C1–91

    Google Scholar 

  11. Gudyma Iu, Maksymov A, Bobák A (2017) Modeling problems of spin crossover nanocrystals. In: Nanophysics, nanomaterials, interface studies, and applications, Springer, pp 63–77

    Google Scholar 

  12. Gudyma I, Maksymov A, Enachescu C (2014) Phase transition in spincrossover compounds in the breathing crystal field model. Phys Rev B 89:224412

    Article  ADS  Google Scholar 

  13. Gudyma YV (2004) Nonequilibrium first-order phase transition in semiconductor system driven by colored noise. Physica A 331(1–2):61–68

    Article  ADS  Google Scholar 

  14. Gudyma I, Maksymov A, Enachescu C (2010) Decay of a metastable high-spin state in spin-crossover compounds: mean first passage time analysis. Eur Phys J B 78(2):167–172

    Article  ADS  Google Scholar 

  15. Gudyma Y, Semenko O (2004) Nonequilibrium kinetics in spin-crossover compounds. Phys Status Solidi B 241(2):370–376

    Article  ADS  Google Scholar 

  16. Gudyma I, Maksymov A (2011) High spin metastable state relaxation of spin-crossover solids driven by white noise. J Phys Chem Solids 72:73–77

    Article  ADS  Google Scholar 

  17. Gudyma I, Maksymov A, Dimian M (2013) Stochastic kinetics of photoinduced phase transitions in spin-crossover solids. Phys Rev E 88(4):042111

    Article  ADS  Google Scholar 

  18. Gudyma I, Maksymov A, Spinu L (2015) Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model. Appl Surface Sci 352:60–65

    Article  ADS  Google Scholar 

  19. Gudyma I, Ivashko V, Bobak A (2017) Surface and size effects in spin-crossover nanocrystals. Nanoscale Res Lett 12(1):101

    Article  ADS  Google Scholar 

  20. Gudyma I, Maksymov A (2017) Surface-environment effects in spin-crossover solids. Appl Surface Sci 407:93–98

    Article  ADS  Google Scholar 

  21. Gudyma I, Maksymov A, Miyashita S (2011) Noise effects in a finite-size Ising-like model. Phys Rev E 84(3):031126

    Article  ADS  Google Scholar 

  22. Gudyma I, Maksymov A (2012) Optically induced switching in spin-crossover compounds: microscopic and macroscopic models and their relationship. Applied Opt 51(10):C55–C61

    Article  Google Scholar 

  23. Gudyma I, Maksymov A (2019) The cooperativity in 3D spin-crossover nanocrystals with ferromagnetic and antiferromagnetic surface. Appl Surface Sci 489:779–784

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research of A.M. was partly supported by the project No.2015/19/B/ST2/01028 financed by National Science Centre (Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iurii Gudyma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gudyma, I., Maksymov, A. (2021). Ising-Like Model of Nanosize Spin-Crossover Molecular Crystals. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_11

Download citation

Publish with us

Policies and ethics