Skip to main content

Sector-Selective Hybrid Scheme Facilitating Hardware Supportability Over Image Compression

  • Conference paper
  • First Online:
Intelligent Algorithms in Software Engineering (CSOC 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1224))

Included in the following conference series:

Abstract

Image compression is one of the inevitable operation demands for any form of transmission as well as storage optimization services. Review of existing literatures towards the compression scheme shows that there are further scope of improvement to be carried out to ensure an effective realization of hardware implementation of the cost effective image compression. Therefore, this paper presents a computational model that is constructed for facilitating an effective hardware realization of an effective hybrid compression operation. The proposed system introduces a selective sector of an image to be subjected to the lossless image compression while the other parts of the image are subjected to the lossy image compression scheme. Adopting analytical research based scheme, the outcome of the study is found to offer a better signal quality for the reconstructed image and effective compression performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bouchemel, A., Abed, D., Moussaoui, A.: Enhancement of compressed image transmission in WMSNs using modified μ-nonlinear transformation. IEEE Commun. Lett. 22(5), 934–937 (2018)

    Article  Google Scholar 

  2. Paek, J., Ko, J.: K-means clustering-based data compression scheme for wireless imaging sensor networks. IEEE Syst. J. 11(4), 2652–2662 (2017)

    Article  Google Scholar 

  3. Heng, S., So-In, C., Nguyen, T.G.: Distributed image compression architecture over wireless multimedia sensor networks. Wirel. Commun. Mob. Comput. 2017 (2017)

    Google Scholar 

  4. Makkaoui, L., Lecuire, V., Moureaux, J.: Fast zonal DCT-based image compression for Wireless Camera Sensor Networks. In: 2010 2nd International Conference on Image Processing Theory, Tools and Applications, Paris, pp. 126–129 (2010)

    Google Scholar 

  5. John Moses, C., Selvathi, D., Anne Sophia, V.M.: VLSI architectures for image interpolation: a survey. VLSI Des. 2014 (2014)

    Google Scholar 

  6. Yin, H., Jia, H., Zhou, J., Gao, Z.: Survey on algorithm and VLSI architecture for MPEG-Like video coder. J. Sig. Process. Syst. 88(3), 357–410 (2016). https://doi.org/10.1007/s11265-016-1160-3

    Article  Google Scholar 

  7. Hasan, K.K., Dham, M.A.A., Nawaf, S.F.: Low complexity hardware architectures for wavelet transforms: a survey. In: International Conference on Materials Engineering and Science (2018)

    Google Scholar 

  8. Kidav, J.U., Ajeesh, P.A., Vasudev, D., Deepak, V.S., Menon, A.: A VLSI architecture for wavelet based image compression. In: Meghanathan, N., Nagamalai, D., Chaki, N. (eds.) Advances in Computing and Information Technology. AISC, vol. 178, pp. 603–614. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-31600-5_59

  9. Bağbaba, A.Ç., Örs, B.: Hardware implementation of novel image compression-encryption system on a FPGA. In: 2015 9th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, pp. 1159–1163 (2015)

    Google Scholar 

  10. Li, S., Yin, H., Fang, X., Lu, H.: Lossless image compression algorithm and hardware architecture for bandwidth reduction of external memory. IET Image Process. 11(6), 379–388, (2017)

    Google Scholar 

  11. Wang, H., Wang, T., Liu, L,. Sun, H., Zheng, N.: Efficient compression-based line buffer design for image/video processing circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(10), 2423–2433 (2019)

    Google Scholar 

  12. Dimililer, K., Amircanov, A.: Image compression system with an optimisation of compression ratio. IET Image Process. 13 (2019) https://doi.org/10.1049/iet-ipr.2019.0114

  13. Chen, C., Chen, S., Lioa, C., Abu, P.A.R.: Lossless CFA image compression chip design for wireless capsule endoscopy. IEEE Access 7, 107047–107057 (2019)

    Article  Google Scholar 

  14. Hernández-Cabronero, M., Sanchez, V., Blanes, I., Aulí-Llinàs, F., Marcellin, M.W., Serra-Sagristà, J.: Mosaic-based color-transform optimization for lossy and lossy-to-lossless compression of pathology whole-slide images. IEEE Trans. Med. Imaging 38(1), 21–32 (2019)

    Article  Google Scholar 

  15. Halawani, Y., Mohammad, B., Al-Qutayri, M., Al-Sarawi, S.F.: Memristor-based hardware accelerator for image compression. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(12), 2749–2758 (2018)

    Google Scholar 

  16. Choi, J., Kim, B., Kim, H., Lee, H.: A high-throughput hardware accelerator for lossless compression of a DDR4 command trace. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(1), 92–102 (2019)

    Google Scholar 

  17. Hsieh, J., Shih, M., Huang, X.: Algorithm and VLSI architecture design of low-power SPIHT decoder for mHealth applications. IEEE Trans. Biomed. Circ. Syst. 12(6), 1450–1457 (2018)

    Article  Google Scholar 

  18. Kaur, A., Mishra, D., Jain, S., Sarkar, M.: Content driven on-chip compression and time efficient reconstruction for image sensor applications. IEEE Sensors J. 18(22), 9169–9179 (2018)

    Google Scholar 

  19. Onishi, T., et al.: A single-chip 4 K 60-fps 4:2:2 HEVC video encoder LSI employing efficient motion estimation and mode decision framework with scalability to 8 K. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26(10), 1930–1938 (2018)

    Google Scholar 

  20. Zhu, S., He, Z., Meng, X., Zhou, J., Zeng, B.: Compression-dependent transform-domain downward conversion for block-based image coding. IEEE Trans. Image Process. 27(6), 2635–2649 (2018)

    Article  MathSciNet  Google Scholar 

  21. Kim, K., Lee, C., Lee, H.: A sub-pixel gradient compression algorithm for text image display on a smart device. IEEE Trans. Consum. Electron. 64(2), 231–239 (2018)

    Article  Google Scholar 

  22. Chen, Q., Sun, H., Zheng, N.: Worst case driven display frame compression for energy-efficient ultra-HD display processing. IEEE Trans. Multimedia 20(5), 1113–1125 (2018)

    Article  Google Scholar 

  23. Lucas, L.F.R., Rodrigues, N.M.M., da Silva Cruz, L.A., de Faria, S.M.M.: Lossless compression of medical images using 3-D predictors. IEEE Trans. Med. Imaging 36(11), 2250–2260 (2017)

    Google Scholar 

  24. Parikh, S.S., Ruiz, D., Kalva, H., Fernández-Escribano, G., Adzic, V.: High bit-depth medical image compression with HEVC. IEEE J. Biomed. Health Inform. 22(2), 552–560 (2018)

    Article  Google Scholar 

  25. Yin, S., Ouyang, P., Chen, T., Liu, L., Wei, S.: A configurable parallel hardware architecture for efficient integral histogram image computing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 24(4), 1305–1318 (2016)

    Google Scholar 

  26. Peter, P., Kaufhold, L., Weickert, J.: Turning diffusion-based image colorization into efficient color compression. IEEE Trans. Image Process. 26(2), 860–869 (2017)

    Article  MathSciNet  Google Scholar 

  27. Chen, S., Liu, T., Shen, C., Tuan, M.: VLSI implementation of a cost-efficient near-lossless CFA image compressor for wireless capsule endoscopy. IEEE Access 4, 10235–10245 (2016)

    Article  Google Scholar 

  28. Kim, S., Kim, M., Kim, J., Lee, H.: Fixed-Ratio Compression of an RGBW Image and Its Hardware Implementation. IEEE J. Emerg. Sel. Topics Circ. Syst. 6(4), 484–496 (2016)

    Article  Google Scholar 

  29. Zeinolabedin, S.M.A., Zhou, J., Liu, X., Kim, T.T.: An area- and energy-efficient FIFO design using error-reduced data compression and near-threshold operation for image/video applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(11), 2408–2416 (2015)

    Google Scholar 

  30. Zhang, S., Tian, X., Xiong, C., Tian, J.: Unified VLSI architecture for photo core transform used in JPEG XR. Electron. Lett. 51(8), 628–630 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Premachand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Premachand, D.R., Eranna, U. (2020). Sector-Selective Hybrid Scheme Facilitating Hardware Supportability Over Image Compression. In: Silhavy, R. (eds) Intelligent Algorithms in Software Engineering. CSOC 2020. Advances in Intelligent Systems and Computing, vol 1224. Springer, Cham. https://doi.org/10.1007/978-3-030-51965-0_5

Download citation

Publish with us

Policies and ethics