Skip to main content

Approximate Bilevel Optimization with Population-Based Evolutionary Algorithms

  • Chapter
  • First Online:
Bilevel Optimization

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 161))

Abstract

Population-based optimization algorithms, such as evolutionary algorithms, have enjoyed a lot of attention in the past three decades in solving challenging search and optimization problems. In this chapter, we discuss recent population-based evolutionary algorithms for solving different types of bilevel optimization problems, as they pose numerous challenges to an optimization algorithm. Evolutionary bilevel optimization (EBO) algorithms are gaining attention due to their flexibility, implicit parallelism, and ability to customize for specific problem solving tasks. Starting with surrogate-based single-objective bilevel optimization problems, we discuss how EBO methods are designed for solving multi-objective bilevel problems. They show promise for handling various practicalities associated with bilevel problem solving. The chapter concludes with results on an agro-economic bilevel problem. The chapter also presents a number of challenging single and multi-objective bilevel optimization test problems, which should encourage further development of more efficient bilevel optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Alves, J.P. Costa, An algorithm based on particle swarm optimization for multiobjective bilevel linear problems. Appl. Math. Comput. 247(C), 547–561 (2014)

    Google Scholar 

  2. J.S. Angelo, H.J.C. Barbosa, A study on the use of heuristics to solve a bilevel programming problem. Int. Trans. Oper. Res. 22(5), 861–882 (2015)

    Article  Google Scholar 

  3. J. Angelo, E. Krempser, H. Barbosa, Differential evolution for bilevel programming, in Proceedings of the 2013 Congress on Evolutionary Computation (CEC-2013) (IEEE Press, Piscataway, 2013)

    Google Scholar 

  4. J.S. Angelo, E. Krempser, H.J.C. Barbosa, Differential evolution assisted by a surrogate model for bilevel programming problems, in 2014 IEEE Congress on Evolutionary Computation (CEC) (IEEE, Piscataway, 2014), pp. 1784–1791

    Book  Google Scholar 

  5. S. Bandaru, K. Deb, Metaheuristic techniques (chapter 11), in Decision Sciences: Theory and Practice, ed. by R.N. Sengupta, A. Gupta, J. Dutta (CRC Press, Boca Raton, 2016)

    Google Scholar 

  6. B. Barnhart, Z. Lu, M. Bostian, A. Sinha, K. Deb, L. Kurkalova, M. Jha, G. Whittaker, Handling practicalities in agricultural policy optimization for water quality improvements, in Proceedings of the Genetic and Evolutionary Computation Conference GECCO’17 (ACM, New York, 2017), pp. 1065–1072

    Google Scholar 

  7. H.I. Calvete, C. Galé, On linear bilevel problems with multiple objectives at the lower level. Omega 39(1), 33–40 (2011)

    Article  Google Scholar 

  8. H.I. Calvete, C. Gale, P.M. Mateo, A new approach for solving linear bilevel problems using genetic algorithms. Eur. J. Oper. Res. 188(1), 14–28 (2008)

    Article  Google Scholar 

  9. H.I. Calvete, C. Galé, M. Oliveros, Bilevel model for production–distribution planning solved by using ant colony optimization. Comput. Oper. Res. 38(1), 320–327 (2011)

    Article  Google Scholar 

  10. J.-F. Camacho-Vallejo, R. Muñoz-Sánchez, J.L. González-Velarde, A heuristic algorithm for a supply chain’s production-distribution planning. Comput. Oper. Res. 61, 110–121 (2015)

    Article  Google Scholar 

  11. C.A.C. Coello, D.A. VanVeldhuizen, G. Lamont, Evolutionary Algorithms for Solving Multi-Objective Problems (Kluwer, Boston, 2002)

    Book  Google Scholar 

  12. K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley, Chichester, 2001)

    Google Scholar 

  13. K. Deb, C. Myburgh, A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables. Eur. J. Oper. Res. 261(2), 460–474 (2017)

    Article  Google Scholar 

  14. K. Deb, A. Sinha, Constructing test problems for bilevel evolutionary multi-objective optimization, in 2009 IEEE Congress on Evolutionary Computation (CEC-2009) (IEEE Press, Piscataway, 2009), pp. 1153–1160

    Google Scholar 

  15. K. Deb, A. Sinha, An evolutionary approach for bilevel multi-objective problems, in Cutting-Edge Research Topics on Multiple Criteria Decision Making, Communications in Computer and Information Science, vol. 35 (Springer, Berlin, 2009), pp. 17–24

    Google Scholar 

  16. K. Deb, A. Sinha, Solving bilevel multi-objective optimization problems using evolutionary algorithms, in Evolutionary Multi-Criterion Optimization (EMO-2009) (Springer, Berlin, 2009), pp. 110–124

    Google Scholar 

  17. K. Deb, A. Sinha, An efficient and accurate solution methodology for bilevel multi-objective programming problems using a hybrid evolutionary-local-search algorithm. Evol. Comput. J. 18(3), 403–449 (2010)

    Article  Google Scholar 

  18. K. Deb, S. Gupta, J. Dutta, B. Ranjan, Solving dual problems using a coevolutionary optimization algorithm. J. Global Optim. 57, 891–933 (2013)

    Article  Google Scholar 

  19. G. Eichfelder, Solving nonlinear multiobjective bilevel optimization problems with coupled upper level constraints. Technical Report Preprint No. 320, Preprint-Series of the Institute of Applied Mathematics, University of Erlangen-Nornberg (2007)

    Google Scholar 

  20. G. Eichfelder, Multiobjective bilevel optimization, Math. Program. 123(2), 419–449 (2010)

    Article  Google Scholar 

  21. N. Gadhi, S. Dempe, Necessary optimality conditions and a new approach to multiobjective bilevel optimization problems. J. Optim. Theory Appl. 155(1), 100–114 (2012)

    Article  Google Scholar 

  22. F. Glover, G.A. Kochenberger, Handbook of Metaheuristics (Springer, Berlin, 2003)

    Book  Google Scholar 

  23. W. Halter, S. Mostaghim, Bilevel optimization of multi-component chemical systems using particle swarm optimization, in Proceedings of World Congress on Computational Intelligence (WCCI-2006) (2006), pp. 1240–1247

    Google Scholar 

  24. S.R. Hejazi, A. Memariani, G. Jahanshahloo, M.M. Sepehri, Linear bilevel programming solution by genetic algorithm. Comput. Oper. Res. 29(13), 1913–1925 (2002)

    Article  Google Scholar 

  25. M.M. Islam, H.K. Singh, T. Ray, A nested differential evolution based algorithm for solving multi-objective bilevel optimization problems, in Proceedings of the Second Australasian Conference on Artificial Life and Computational Intelligence - Volume 9592 (Springer, Berlin, 2016), pp. 101–112

    Google Scholar 

  26. M.K. Jha, P.W. Gassman, J.G. Arnold, Water quality modeling for the raccoon river watershed using swat. Trans. ASAE 50(2), 479–493 (2007)

    Article  Google Scholar 

  27. Y. Jiang, X. Li, C. Huang, X. Wu, Application of particle swarm optimization based on CHKS smoothing function for solving nonlinear bilevel programming problem. Appl. Math. Comput. 219(9), 4332–4339 (2013)

    Google Scholar 

  28. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks (IEEE Press, Piscataway, 1995), pp. 1942–1948

    Google Scholar 

  29. H. Li, A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems. Ann. Oper. Res. 235, 543–558 (2015)

    Article  Google Scholar 

  30. H. Li, Y. Wand, A hybrid genetic algorithm for solving nonlinear bilevel programming problems based on the simplex method. Int. Conf. Nat. Comput. 4, 91–95 (2007)

    Google Scholar 

  31. X. Li, P. Tian, X. Min, A hierarchical particle swarm optimization for solving bilevel programming problems, in Proceedings of Artificial Intelligence and Soft Computing (ICAISC’06) (2006), pp. 1169–1178. Also LNAI 4029

    Google Scholar 

  32. H. Li, Q. Zhang, Q. Chen, L. Zhang, Y.-C. Jiao, Multiobjective differential evolution algorithm based on decomposition for a type of multiobjective bilevel programming problems. Knowl. Based Syst. 107, 271–288 (2016)

    Article  Google Scholar 

  33. M. Linnala, E. Madetoja, H. Ruotsalainen, J. Hämäläinen, Bi-level optimization for a dynamic multiobjective problem. Eng. Optim. 44(2), 195–207 (2012)

    Article  Google Scholar 

  34. Z. Lu, K. Deb, A. Sinha, Uncertainty handling in bilevel optimization for robust and reliable solutions. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 26(suppl. 2), 1–24 (2018)

    Google Scholar 

  35. R. Mathieu, L. Pittard, G. Anandalingam, Genetic algorithm based approach to bi-level linear programming. Oper. Res. 28(1), 1–21 (1994)

    Article  Google Scholar 

  36. J.-A. Mejía-de Dios, E. Mezura-Montes, A physics-inspired algorithm for bilevel optimization, in 2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC) (2018), pp. 1–6

    Google Scholar 

  37. C.O. Pieume, L.P. Fotso, P. Siarry, Solving bilevel programming problems with multicriteria optimization techniques. OPSEARCH 46(2), 169–183 (2009)

    Article  Google Scholar 

  38. S. Pramanik , P.P. Dey, Bi-level multi-objective programming problem with fuzzy parameters. Int. J. Comput. Appl. 30(10), 13–20 (2011). Published by Foundation of Computer Science, New York, USA

    Google Scholar 

  39. S. Ruuska, K. Miettinen, Constructing evolutionary algorithms for bilevel multiobjective optimization, in 2012 IEEE Congress on Evolutionary Computation (CEC) (2012), pp. 1–7

    Google Scholar 

  40. X. Shi, H.S. Xia, Model and interactive algorithm of bi-level multi-objective decision-making with multiple interconnected decision makers. J. Multi-Criteria Decis. Anal. 10(1), 27–34 (2001)

    Article  Google Scholar 

  41. H.K. Singh, M.M. Islam, T. Ray, M. Ryan, Nested evolutionary algorithms for computationally expensive bilevel optimization problems: variants and their systematic analysis. Swarm Evol. Comput. 48, 329–344 (2019)

    Article  Google Scholar 

  42. A. Sinha, Bilevel multi-objective optimization problem solving using progressively interactive evolutionary algorithm, in Proceedings of the Sixth International Conference on Evolutionary Multi-Criterion Optimization (EMO-2011) (Springer, Berlin, 2011), pp. 269–284

    Google Scholar 

  43. A. Sinha, K. Deb, Towards understanding evolutionary bilevel multi-objective optimization algorithm, in IFAC Workshop on Control Applications of Optimization (IFAC-2009), vol. 7 (Elsevier, Amsterdam, 2009)

    Google Scholar 

  44. A. Sinha, P. Malo, K. Deb, Efficient evolutionary algorithm for single-objective bilevel optimization (2013). arXiv:1303.3901

    Google Scholar 

  45. A. Sinha, P. Malo, K. Deb, An improved bilevel evolutionary algorithm based on quadratic approximations, in 2014 IEEE Congress on Evolutionary Computation (CEC-2014) (IEEE Press, Piscataway, 2014), pp. 1870–1877

    Google Scholar 

  46. A. Sinha, P. Malo, K. Deb, Test problem construction for single-objective bilevel optimization. Evol. Comput. J. 22(3), 439–477 (2014)

    Article  Google Scholar 

  47. A. Sinha, P. Malo, A. Frantsev, K. Deb, Finding optimal strategies in a multi-period multi-leader-follower stackelberg game using an evolutionary algorithm. Comput. Oper. Res. 41, 374–385 (2014)

    Article  Google Scholar 

  48. A. Sinha, P. Malo, P. Xu, K. Deb, A bilevel optimization approach to automated parameter tuning, in Proceedings of the 16th Annual Genetic and Evolutionary Computation Conference (GECCO 2014) (ACM Press, New York, 2014)

    Google Scholar 

  49. A. Sinha, P. Malo, K. Deb, Towards understanding bilevel multi-objective optimization with deterministic lower level decisions, in Proceedings of the Eighth International Conference on Evolutionary Multi-Criterion Optimization (EMO-2015). (Springer, Berlin, 2015)

    Google Scholar 

  50. A. Sinha, P. Malo, K. Deb, Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping. Eur. J. Oper. Res. 257, 395–411 (2016)

    Article  Google Scholar 

  51. A. Sinha, P. Malo, K. Deb, Solving optimistic bilevel programs by iteratively approximating lower level optimal value function, in 2016 IEEE Congress on Evolutionary Computation (CEC-2016) (IEEE Press, Piscataway, 2016)

    Google Scholar 

  52. A. Sinha, P. Malo, K. Deb, P. Korhonen, J. Wallenius, Solving bilevel multi-criterion optimization problems with lower level decision uncertainty. IEEE Trans. Evol. Comput. 20(2), 199–217 (2016)

    Article  Google Scholar 

  53. A. Sinha, P. Malo, K. Deb, Approximated set-valued mapping approach for handling multiobjective bilevel problems. Comput. Oper. Res. 77, 194–209 (2017)

    Article  Google Scholar 

  54. A. Sinha, Z. Lu, K. Deb, P. Malo, Bilevel optimization based on iterative approximation of multiple mappings (2017). arXiv:1702.03394

    Google Scholar 

  55. A. Sinha, P. Malo, K. Deb, A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2018)

    Article  Google Scholar 

  56. A. Sinha, S. Bedi, K. Deb, Bilevel optimization based on kriging approximations of lower level optimal value function, in 2018 IEEE Congress on Evolutionary Computation (CEC) (IEEE, Piscataway, 2018), pp. 1–8.

    Google Scholar 

  57. A. Sinha, T. Soun, K. Deb, Using Karush-Kuhn-Tucker proximity measure for solving bilevel optimization problems. Swarm Evol. Comput. 44, 496–510 (2019)

    Article  Google Scholar 

  58. A. Sinha, Z. Lu, K. Deb, P. Malo, Bilevel optimization based on iterative approximation of multiple mappings. J. Heuristics 26, 151–185 (2020)

    Article  Google Scholar 

  59. R. Storn, K. Price, Differential evolution – a fast and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  Google Scholar 

  60. Z. Wan, G. Wang, B. Sun, A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving nonlinear bilevel programming problems. Swarm Evol. Comput. 8, 26–32 (2013)

    Article  Google Scholar 

  61. G. Wang, S. Shan, Review of metamodeling techniques in support of engineering design optimization. J. Mech. Des. 129(4), 370–380 (2007)

    Article  Google Scholar 

  62. Y. Wang, Y.C. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handling scheme. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 32(2), 221–232 (2005)

    Article  Google Scholar 

  63. G. Wang, Z. Wan, X. Wang, Y. Lu, Genetic algorithm based on simplex method for solving linear-quadratic bilevel programming problem. Comput. Math. Appl. 56(10), 2550–2555 (2008)

    Article  Google Scholar 

  64. Y. Wang, H. Li, C. Dang, A new evolutionary algorithm for a class of nonlinear bilevel programming problems and its global convergence. INFORMS J. Comput. 23(4), 618–629 (2011)

    Article  Google Scholar 

  65. G. Whittaker, R. Färe, S. Grosskopf, B. Barnhart, M. Bostian, G. Mueller-Warrant, S. Griffith, Spatial targeting of agri-environmental policy using bilevel evolutionary optimization. Omega 66(A), 15–27 (2017)

    Article  Google Scholar 

  66. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  67. J.J. Ye, Necessary optimality conditions for multiobjective bilevel programs. Math. Oper. Res. 36(1), 165–184 (2011)

    Article  Google Scholar 

  68. J.J. Ye, D. Zhu, New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches. SIAM J. Optim. 20(4), 1885–1905 (2010)

    Article  Google Scholar 

  69. Y. Yin, Genetic algorithm based approach for bilevel programming models. J. Transp. Eng. 126(2), 115–120 (2000)

    Article  Google Scholar 

  70. T. Zhang, T. Hu, X. Guo, Z. Chen, Y. Cheng, Solving high dimensional bilevel multiobjective programming problem using a hybrid particle swarm optimization algorithm with crossover operator. Knowl. Based Syst. 53, 13–19 (2013)

    Article  Google Scholar 

  71. T. Zhang, T. Hu, Y. Zheng, X. Guo, An improved particle swarm optimization for solving bilevel multiobjective programming problem. J. Appl. Math. 2012, 1–13 (2012)

    Google Scholar 

  72. X. Zhu, Q. Yu, X. Wang, A hybrid differential evolution algorithm for solving nonlinear bilevel programming with linear constraints, in 5th IEEE International Conference on Cognitive Informatics, 2006. ICCI 2006, vol. 1 (IEEE, Piscataway, 2006), pp. 126–131

    Google Scholar 

Download references

Acknowledgements

Some parts of this chapter are adapted from authors’ published papers on the topic. Further details can be obtained from the original studies, referenced at the end of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kalyanmoy Deb or Zhichao Lu .

Editor information

Editors and Affiliations

Appendix: Bilevel Test Problems

Appendix: Bilevel Test Problems

1.1 Non-scalable Single-Objective Test Problems from Literature

In this section, we provide some of the standard bilevel test problems used in the evolutionary bilevel optimization studies. Most of these test problems involve only a few fixed number of variables at both upper and lower levels. The test problems (TPs) involve a single objective function at each level. Formulation of the problems are provided in Table 13.5.

Table 13.5 Standard test problems TP1–TP8
Table 6 Table 13.5 Continued.

1.2 Scalable Single-Objective Bilevel Test Problems

Sinha-Malo-Deb (SMD) test problems [46] are a set of 14 scalable single-objective bilevel test problems that offer a variety of controllable difficulties to an algorithm. The SMD test problem suite was originally proposed with eight unconstrained and four constrained problems [46], it was later extended with two additional unconstrained test problems (SMD13 and SMD14) in [54]. Both these problems contain a difficult φ-mapping, among other difficulties. The upper and lower level functions follow the following structure to induce difficulties due to convergence, interaction, and function dependence between the two levels. The vectors x u = x and x l = y are further divided into two sub-vectors. The φ-mapping is defined by the function f 1. Formulation of SMD test problems are provided in Table 13.6.

$$\displaystyle \begin{aligned} \begin{array}{l} F(\mathbf{x}, \mathbf{y}) = F_1({\mathbf{x}}^{1}) + F_2({\mathbf{y}}^{1}) + F_3({\mathbf{x}}^{2}, {\mathbf{y}}^{2}), \\ f(\mathbf{x}, \mathbf{y}) = f_1({\mathbf{x}}^{1}, {\mathbf{x}}^{2}) + f_2({\mathbf{y}}^{1}) + f_3({\mathbf{x}}^{2}, {\mathbf{y}}^{2}), \end{array} \end{aligned} $$
(13.10.13)

where, x = (x 1, x 2) and y = (y 1, y 2).

Table 13.6 SMD test problems 1–14
Table 8 Table 13.6 Continued.
Table 9 Table 13.6 Continued.

1.3 Bi-objective Bilevel Test Problems

The Deb-Sinha (DS) test suite contains five test problems with two objectives at each level. All problems are scalable with respect to variable dimensions at both levels. Note that x u = x and x l = y. The location and shape of respective upper and lower level Pareto-optimal fronts can be found at the original paper [14].

1.3.1 DS 1

Minimize:

$$\displaystyle \begin{aligned} \begin{cases} F_1(\mathbf{x}, \mathbf{y}) = 1 + r - \cos{}(\alpha\pi x_1)) + \sum_{j=2}^{K}(x_j - \frac{j-1}{2})^2 + \tau\sum_{i=2}^{K}(y_i - x_i)^2 - r~\cos\Big(\gamma\frac{pi}{2}\frac{y_1}{x_1}\Big)\\ F_2(\mathbf{x}, \mathbf{y}) = 1 + r - \sin{}(\alpha\pi x_1)) + \sum_{j=2}^{K}(x_j - \frac{j-1}{2})^2 + \tau\sum_{i=2}^{K}(y_i - x_i)^2 - r~\sin\Big(\gamma\frac{pi}{2}\frac{y_1}{x_1}\Big)\\ \end{cases} \end{aligned}$$

subject to:

$$\displaystyle \begin{aligned} \mathbf{y}\in \mathop{\mathrm{argmin}}\limits_{\mathbf{y}} \begin{cases} f_1(\mathbf{x}, \mathbf{y}) = & y_1^2 + \sum_{i=2}^{K}(y_i - x_i)^2 + \sum_{i=2}^{K}10(1 - \cos{}(\frac{\pi}{K}(y_i - x_i))) \\ f_2(\mathbf{x}, \mathbf{y}) = & \sum_{i=1}^{K}(y_i - x_i)^2 + \sum_{i=2}^{K}10|\sin{}(\frac{\pi}{K}(y_i - x_i))| \end{cases} \end{aligned}$$
$$\displaystyle \begin{aligned}y_i \in [-K,K], ~i = 1,\ldots,K, ~x_1 \in [1,4], ~x_j \in [-K,K], ~j=2,\ldots,K.\end{aligned}$$

Recommended parameter setting for this problem, K = 10 (overall 20 variables), r = 0.1, α = 1, γ = 1, τ = 1. This problem results in a convex upper level Pareto-optimal front in which one specific solution from each lower level Pareto-optimal front gets associated with each upper level Pareto-optimal solution.

1.3.2 DS 2

Minimize:

subject to:

$$\displaystyle \begin{aligned} \mathbf{y}\in \mathop{\mathrm{argmin}}\limits_{\mathbf{y}} \begin{cases} f_1(\mathbf{x}, \mathbf{y}) = & y_1^2 + \sum_{i=2}^{K}(y_i - x_i)^2 \\ f_2(\mathbf{x}, \mathbf{y}) = & \sum_{i=1}^{K}i(y_i - x_i)^2 \end{cases} \end{aligned}$$
$$\displaystyle \begin{aligned}y_i \in [-K,K], ~i = 1,\ldots,K, ~x_1 \in [0.001,K], ~x_j \in [-K,K], ~j=2,\ldots,K.\end{aligned}$$

Recommended parameter setting for this problem, K = 10 (overall 20 variables), r = 0.25. Due to the use of periodic terms in v 1 and v 2 functions, the upper level Pareto front corresponds to only six discrete values of y 1 = [0.001, 0.2, 0.4, 0.6, 0.8, 1]. Setting τ = −1 will introduces a conflict between upper and lower level problems. For this problem, a number of contiguous lower level Pareto-optimal solutions are Pareto-optimal at the upper level for each upper level Pareto-optimal variable vector.

1.3.3 DS 3

Minimize:

$$\displaystyle \begin{aligned} \begin{array}{l} \begin{cases} F_1(\mathbf{x}, \mathbf{y}) = x_1 + \sum_{j=3}^{K}(x_j - j/2)^2 + \tau\sum_{i=3}^{K}(y_i-x_i)^2 - R(x_1)\cos\big(4\tan^{-1}(\frac{x_2-y_2}{x_1-y_1})\big),\\ F_2(\mathbf{x}, \mathbf{y}) = x_2 + \sum_{j=3}^{K}(x_j - j/2)^2 + \tau\sum_{i=3}^{K}(y_i-x_i)^2 - R(x_1)\sin\big(4\tan^{-1}(\frac{x_2-y_2}{x_1-y_1})\big),\\ \end{cases} \end{array} \end{aligned}$$

subject to:

$$\displaystyle \begin{aligned} \begin{array}{l} \mathbf{y}\in \mathop{\mathrm{argmin}}\limits_{\mathbf{y}} \begin{cases} f_1(\mathbf{x}, \mathbf{y}) = y_1 + \sum_{i=3}^{K}(y_i - x_i)^2, \\ f_2(\mathbf{x}, \mathbf{y}) = y_2 + \sum_{i=3}^{K}(y_i - x_i)^2,\\ \mathop{\mbox{subject}\ \mbox{to}}: \quad g_1(y) = (y_1 - x_1)^2 + (y_2 - x_2)^2 \leq r^2, \end{cases}\\ G(\mathbf{x}) = x_2 - (1 - x_1^2) \geq 0, \\ y_i \in [-K,K], ~i = 1,\ldots,K, ~x_j \in [0,K], ~j = 1,\ldots,K, ~x_1 \mbox{ is a multiple of } 0.1. \end{array} \end{aligned}$$

In this test problem, the variable x 1 is considered to be discrete, thereby causing only a few x 1 values to represent the upper level Pareto front. Recommended parameter setting for this problem: \(R(x_1)=0.1+0.15|\sin {}(2\pi (x_1 - 0.1)|\) and use r = 0.2, τ = 1, and K = 10. Like in DS2, in this problem, parts of lower level Pareto-optimal front become upper level Pareto-optimal.

1.3.4 DS 4

Minimize:

$$\displaystyle \begin{aligned} \begin{array}{l} \begin{cases} F_1(\mathbf{x}, \mathbf{y}) = (1 - y_1)(1 + \sum_{j=2}^{K} y_j^2)x_1, \\ F_2(\mathbf{x}, \mathbf{y}) = y_1(1 + \sum_{j=2}^K y_j^2)x_1, \\ \end{cases} \mathop{\mbox{subject}\ \mbox{to}}: \\ \mathbf{y}\in \mathop{\mathrm{argmin}}\limits_{\mathbf{y}} \begin{cases} f_1(\mathbf{x}, \mathbf{y}) = (1 - y_1)(1 + \sum_{j=K+1}^{K+L} y_j^2)x_1, \\ f_2(\mathbf{x}, \mathbf{y}) = y_1(1 + \sum_{j=K+1}^{K+L} y_j^2)x_1, \\ \end{cases}\\ G(\mathbf{x}) = (1-y_1)x_1 + \frac{1}{2} x_1 y_1 - 1 \geq 0, \\ 1 \leq x_1 \leq 2, \quad -1 \leq y_1 \leq 1, \quad -(K + L) \leq y_i \leq (K + L), \ i = 2, \ldots, (K + L). \end{array}\end{aligned}$$

For this problem, there are a total of K + L + 1 variables. The original study recommended K = 5 and L = 4. This problem has a linear upper level Pareto-optimal front in which a single lower level solution from a linear Pareto-optimal front gets associated with the respective upper level variable vector.

1.3.5 DS 5

This problem exactly the same as DS4, except

$$\displaystyle \begin{aligned}G(\mathbf{x}) = (1-y_1)x_1 + \frac{1}{2} x_1 y_1 - 2 + \frac{1}{5}\left[5(1-y_1)x_1+ 0.2\right] \geq 0.\end{aligned}$$

This makes a number of lower level Pareto-optimal solutions to be Pareto-optimal at the upper level for each upper level variable vector.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deb, K., Sinha, A., Malo, P., Lu, Z. (2020). Approximate Bilevel Optimization with Population-Based Evolutionary Algorithms. In: Dempe, S., Zemkoho, A. (eds) Bilevel Optimization. Springer Optimization and Its Applications, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-030-52119-6_13

Download citation

Publish with us

Policies and ethics