Skip to main content

Recent Trends in Nanobioremediation

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

  • 513 Accesses

Abstract

Environmental pollution is an issue of immense concern for our earth’s ecosystem. Use of any natural/man-made resources at a higher rate causes toxicity and can result in pollution. It decreases the environmental quality and increases the threats to life support systems. Bioremediation is a process to remediate or to degrade these toxic compounds into nontoxic compounds by using biological agents. It is an economical and eco-friendly clean-up strategy. There are various technologies used under bioremediation process like bioaugmentation, biostimulation, bioventing, bioleaching, and phytoremediation. Although they are environmentally safe, they are much time consuming, costly, and require huge amount of biological agent. Thus, the use of nanotechnology not only reduces the time and cost but also increases the efficiency of biological agent even when used in less amount. It involves the production and characterization of particle by controlling their shape and size at nanoscale. Nanobioremediation involves the use of nanomaterial to degrade toxic compounds either ex situ or in situ. Synthesis of intra-/extracellular nanoparticle by using microbes can be a novel and eco-friendly approach in the area of bioremediation. In this chapter, we discuss the use of various nanotechnologies in bioremediation of toxic compounds that persist in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Jayaraman A, Abbasi SA (2009) Nanotechnology and its potential in revolutionizing the pollution control scenario. J Inst Public Health Eng 10:1–12

    Google Scholar 

  • Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018) Fungal nanoparticles: a novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, Wang S (eds) Fungal nanobionics: principles and applications. Springer Singapore Pte Ltd, Singapore, pp 61–87

    Chapter  Google Scholar 

  • Alkasir RSJ, Ganesana M, Won YH, Stanciu L, Andreeceu S (2010) Enzyme functionalized nanoparticles for electrochemical biosensors: A comparative study with applications for the detection of bisphenols. Biosens Bioelectron 26:43–49

    Article  CAS  PubMed  Google Scholar 

  • American Society for Testing and Materials (2012) Standard terminology relating to nanotechnology. E 2456-06. ASTM, West Conshohocken

    Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanopart 2014:689419. https://doi.org/10.1155/2014/689419

    Article  CAS  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. https://doi.org/10.1021/acs.langmuir.5b03081

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA, Fatma T, Prasad R (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker S, Satish S (2012) Endophytes: toward a vision in synthesis of nanoparticles for future therapeutic agents. Int J Bio 1:1–11

    Google Scholar 

  • Balogh L, Swanson DR, Tomalia DA, Hagnauer GL, McManus AT (2001) Dendrimersilver complexes and nanocomposites as antimicrobial agents. Nano Lett 1:18–21

    Article  CAS  Google Scholar 

  • Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412

    Article  CAS  Google Scholar 

  • Behera BK, Prasad R (2020) Environmental Technology and Sustainability. Elsevier (ISBN: 9780128191033) https://www.elsevier.com/books/environmental-technology-and-sustainability/behera/978-0-12-819103-3

  • Behera BK, Prasad R (2020a) Aqueous-phase conservation and management. In: Behera BK, Prasad R (eds) Environmental Technology and Sustainability. Elsevier 73–141

    Google Scholar 

  • Behera BK, Prasad R (2020b) Strategies for soil management. In: Behera BK, Prasad R (eds) Environmental Technology and Sustainability. Elsevier 143–167

    Google Scholar 

  • Behera BK, Prasad R (2020c) Greenhouse gas capture and conversion. In: Behera BK, Prasad R (eds) Environmental Technology and Sustainability. Elsevier 41–71

    Google Scholar 

  • Bergmann CP, Machado F (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. In: Araujo P, Tuscaloosa AL (eds) Carbon nanostructures library of congress. Springer International Publishing, New York/Dordrecht/London/Cham/Heidelberg, pp 1–126

    Google Scholar 

  • Bina B, Pourzamani H, Rashidi A, Amin MM (2012) Ethylbenzene removal by carbon nanotubes from aqueous solution. J Environ Public Health 817187:8

    Google Scholar 

  • Biopiles (n.d.) Center for public environmental oversight. http://www.cpeo.org/techtree/ttdescript/biopil.htm. Assessed on 12 April 2019

  • Buhleier E, Wehner W, ogtle FV (1978) ‘Cascade’- and “nonskidchain-like” syntheses of molecular cavity topologies. Synthesis 2:55–158

    Google Scholar 

  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R (2009) Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation-a novel phenomenon. J Appl Phycol 21:145–152

    Article  CAS  Google Scholar 

  • Chen CZS, Cooper S (2002) Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23:3359–3368

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Wang XK (2006) Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Ind Eng Chem Res 45:9144–9149

    Article  CAS  Google Scholar 

  • Chuang FW, Larson RA, Wessman MS (1995) Zerovalent iron-promoted dechlorination of polychlorinated biphenyls. Environ Sci Technol 29:2460–2463

    Article  CAS  PubMed  Google Scholar 

  • Collins PJ, Kotterman M, Field JA, Dobson A (1996) Oxidation of anthracene and benzo [a] pyrene by Laccases from trametes versicolor. Appl Environ Microbiol 62:4563–4567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Commission Joint Research Centre Reference Report (2011) Off J Eur Union. http://ec.europa.eu/environment/index_en.htm

  • Cookson JT Jr (1995) Bioremediation engineering design and application. McGraw-Hill, Inc., New York

    Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79:5–18

    Article  CAS  PubMed  Google Scholar 

  • Dave PN, Chopda LV (2014) Application of iron oxide nanomaterials for the removal of heavy metals. J Nanotechnol 2014:398569

    Article  CAS  Google Scholar 

  • Davis SA, Patel HM, Mayes EL, Mendelson NH, Franco G, Mann S (1998) Brittle bacteria: a biomimetic approach to the formation of fibrous composite materials. Chem Mater 10:2516–2524

    Article  CAS  Google Scholar 

  • DeFriend KA, Wiesner MR, Barron AR (2003) Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J Membr Sci 224:11–28

    Article  CAS  Google Scholar 

  • Dimitrov D (2006) Interactions of antibody conjugated nanoparticles with biological surfaces. Colloids Surf A Physicochem Eng Asp 8:282–283

    Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27

    Article  CAS  Google Scholar 

  • Ding Q, Liang P, Song F, Xiang A (2006) Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent. Sep Sci Technol 41:2723–2732

    Article  CAS  Google Scholar 

  • Elekwachi CO, Andresen J, Hodgman TC (2014) Global use of bioremediation technologies for decontamination of ecosystems. J Bioremed Biodegr 5:225

    Article  CAS  Google Scholar 

  • Feynman R (1960) There’s plenty of room at the bottom. Eng Sci 23:22–36

    Google Scholar 

  • Friedrich KA, Henglein F, Stimming U, Unkauf W (1998) Investigation of Pt particles on gold substrates by IR spectroscopy particle structure and catalytic activity. Colloids Surf A Physicochem Eng Asp 134:193–206

    Article  CAS  Google Scholar 

  • Fugetsu B, Satoh S, Shiba T, Mizutani T, Lin YB, Terui N et al (2004) Caged multiwalled carbon nanotubes as the adsorbents for affinity-based elimination of ionic dyes. Environ Sci Technol 38:6890–6896

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Subramanian V (1984) Microbial degradation of aromatic compounds. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker Inc, New York, pp 181–252

    Google Scholar 

  • Gong JL, Wang B, Zeng GM, Yang CP, Niu CG, Ya Q, Jin NW, Liang ZY (2009) Removal of cationic dyes from aqueous solution using magnetic multi-wall carbon nanotube nanocomposite as adsorbent. J Hazard Mater 164:1517–1522

    Article  CAS  PubMed  Google Scholar 

  • Guo R, Guo X, Yu D, Hu J (2012) Application research in water treatment of PAMAM dendrimer. J Ind Eng Chem 31:671–675

    CAS  Google Scholar 

  • Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene – an overview. Environ Sci Pollut Res 20:2828–2843

    Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SR, Muniyandi J, Hariharan N, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    Article  CAS  PubMed  Google Scholar 

  • Haleemkhan AA, Naseem VBV (2015) Synthesis of nanoparticles from plant extracts. Int J Mod Chem Appl Sci 2:195–203

    Google Scholar 

  • He N, Li P, Zhou Y, Fan S, Ren W (2006) Degradation of pentachlorobiphenyl by a sequential treatment using Pd coating iron and aerobic bacterium (H1). Chemosphere 76:1491–1497

    Article  CAS  Google Scholar 

  • Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an EcoFriendly approach. J Nanomed Nanotechol 4:165

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: Working group III contributing the fifth Assessment Report of the inter-governmental panel on climate change – mitigation of climate change. Cambridge University Press, New York, p 56

    Google Scholar 

  • Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Notices 2014:359316

    PubMed  PubMed Central  Google Scholar 

  • Jang HD, Kim SK, Kim SJ (2001) Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J Nanopart Res 3:141–147

    Article  CAS  Google Scholar 

  • Jianping X, Jim YL, Daniel ICW, Yen PT (2007) Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 3:668–672

    Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  PubMed  Google Scholar 

  • Junyapoon S (2005) Use of zero-valent iron for waste water treatment. KMITL Sci Technol J 5:587–595

    Google Scholar 

  • Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 68:55–60

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61:1017–1026

    Article  CAS  Google Scholar 

  • Kim YM, Murugesan K, Chang YY, Kim EJ, Chang YS (2011) Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. J Chem Technol Biotechnol 87:216–224

    Article  CAS  Google Scholar 

  • Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) Critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29:1–46

    Article  CAS  Google Scholar 

  • Koenig JC, Boparai HK, Lee MJ, O'Carroll DM, Barnes RJ, Manefield MJ (2016) Particles and enzymes: combining nanoscale zero valent iron and organochlorine respiring bacteria for the detoxification of chloroethane mixtures. J Hazard Mater 308:106–112

    Article  CAS  PubMed  Google Scholar 

  • Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Wang SG, Luan ZK, Ding J, Xu CL, Wu DH (2003) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41:1057–1062

    Article  CAS  Google Scholar 

  • Li Y, Liu F, Xia B, Du Q, Zhang P, Wang D, Wanga Z, Xia Y (2010) Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J Hazard Mater 177:876–880

    Article  CAS  PubMed  Google Scholar 

  • Liang P, Ding Q, Song F (2005) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28:2339–2343

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Live science (n.d.). https://www.livescience.com/63559-composting.html. Accessed on 21 May 2019

  • Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686

    Article  CAS  Google Scholar 

  • Manzer H, Mohamed HS, Whaibi A, Firoz M, Mutahhar Y, Khaishany A (2015) Nanotechnology and plant science. Springer International Publishing, Cham

    Google Scholar 

  • Mata YN, Torres E, Blázquez ML, Ballester A, González F, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618

    Article  CAS  PubMed  Google Scholar 

  • Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Kumari M, Pandey S, Chaudhary V, Gupta KC, Nautiyal CS (2014) Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp. Bioresour Technol 166:235–242

    Article  CAS  PubMed  Google Scholar 

  • Mohanpuria P, Rana KN, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Mubarak Ali D, Sasikala M, Gunasekaran M, Thajuddin N (2013) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390

    Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

    Chapter  Google Scholar 

  • Nemecek J, Pokorný P, Lhotský O, Knytl V, Najmanova P, Steinova J, Cerník M, Filipova A, Filip J, Cajthaml T (2016) Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents. Sci Total Environ 563–564:822–834

    Article  PubMed  CAS  Google Scholar 

  • Newkome GR, Yao ZQ, Baker GR, Gupta VK (1985) Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004

    Article  CAS  Google Scholar 

  • Norris RD (1994) Handbook of bioremediation. CRC Press, Boca Raton. Slurry based bioreactors. University of Hawai. https://www.hawaii.edu/abrp/Technologies/slurry.html. Accessed 12 April, 2019

    Google Scholar 

  • Obare SO, Meyer GJ (2004) Nanostructured materials for environmental remediation of organic contaminants in water. J Environ Sci Health A 39:2549–2582

    Article  Google Scholar 

  • Oksanen T, Pere J, Paavilainen L, Buchert J, Viikari L (2000) Treatment of recycled Kraft pulps with Trichoderma reesei hemicellulases and cellulases. J Biotechnol 78:39–44

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Kumari M, Singh SP, Bhattacharya A, Mishra S, Chauhan PS, Mishra A (2015) Bioremediation via nanoparticles: an innovative microbial approach. In: Sharma AK, Khanna DR, Saxena DK, Hooda PS, Singh S, Vimala Y (eds) Handbook of research on uncovering new methods for ecosystem management through bioremediation. IGI Global, Hershey, pp 491–515

    Chapter  Google Scholar 

  • Pollution ENVIS Centre of Madhya Pradesh’s State of Environment (n.d.) Disaster Management Institute (DMI), Bhopal, Ministry of Environment, Forests & Climate Change, Govt of India. http://mpenvis.nic.in/index1.aspx?lid=1470&mid=1&langid=1&linkid=1044. Accessed on 22 May 2019

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Popescu M, Alin V, Lőrinczi A (2010) Biogenic production of nanoparticles. Dig J Nanomater Biostruct 5:1035–1040

    Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart 2014:1–8. https://doi.org/10.1155/2014/963961

    Article  CAS  Google Scholar 

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, (ISBN: 978-3-319-42989-2)

    Book  Google Scholar 

  • Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer Nature Singapore Pte Ltd, Singapore, (ISBN 978-3-319-68423-9)

    Book  Google Scholar 

  • Prasad R, Aranda E (2018) Approaches in Bioremediation: The New Era of Environmental Microbiology and Nanobiotechnology. Springer International Publishing (978-3-030-02369-0) https://www.springer.com/gp/book/9783030023683

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Jha A, Prasad K (2018) Exploring the realms of nature for nanosynthesis. Springer International Publishing, (ISBN 978-3-319-99570-0). https://www.springer.com/978-3-319-99570-0

  • Prasad R, Thirugnanasanbandham K (2019) Advances Research on Nanotechnology for Water Technology. Springer International Publishing https://www.springer.com/us/book/9783030023805

  • Prathna TC, Mathew L, Chandrasekaran N, Raichur AM, Mukherjee A (2010) Biomimetic synthesis of nanoparticles: science, technology and applicability. In: Mukherjee A (ed) Biomimetics, learning from nature. Intech, Croatia, pp 1–21

    Google Scholar 

  • Principals of Bioremediation: In situ bioremediation (1993) the national academies of science engineering medicine, 500 Fifth St., NW|Washington, DC 20001. https://www.nap.edu/read/2131/chapter/4. Accessed 15 June 2019

  • Qiang Y, Sharma A, Paszczynski A, Meyer D (2007) Conjugates of magnetic nanoparticle-enzyme for bioremediation. In: Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show 4, pp 656–659

    Google Scholar 

  • Rauwel P, Küünal S, Ferdov S, Rauwel E (2015) A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv Mater Sci Eng 682749:9

    Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  • Riddin T, Gerickeb M, Whiteleya CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzym Microb Technol 46:501–505

    Article  CAS  Google Scholar 

  • Roco MC (2005) The emergence and policy implications of converging new technologies integrated from the nanoscale. J Nanopart Res 7:129–143

    Article  Google Scholar 

  • Ruffini-Castiglione M, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165

    Article  Google Scholar 

  • Saifuddin N, Wong CW, Yasimura AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70

    Article  CAS  Google Scholar 

  • Salvadori MR, Lepre LF, Ando RA, Oller doNascimento CA, Correa B (2013) Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mines in the Brazilian Amazon region. PLoS One 8:e80519

    Article  PubMed  PubMed Central  Google Scholar 

  • Salvadori MR, Ando RA, Oller doNascimento CA, Corréa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS ONE 9:e-87968

    Article  CAS  Google Scholar 

  • Savage N, Diallo MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342

    Article  CAS  Google Scholar 

  • Sayles GD, You G, Wang M, Kupferle MJ (1997) DDT, DDD, and DDE dechlorination by zero-valent iron. Environ Sci Technol 31:3448–3454

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  CAS  Google Scholar 

  • Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalentmetal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193

    Article  CAS  Google Scholar 

  • Senapati S, Syed A, Moeez S, Kumar A, Ahmad A (2012) Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Mater Lett 79:116–118

    Article  CAS  Google Scholar 

  • Seo SY, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    Article  CAS  PubMed  Google Scholar 

  • Shan GB, Xing JM, Zhang HY, Liu HZ (2005) Biodesulfurization of dibenzothiophene by microbial cells coated with magnetite nanoparticles. Appl Environ Microbiol 71:4497–4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen W, Zhang C, Li Q, Zhang W, Cao L, Ye J (2015) Preparation of titanium dioxide nanoparticle modified photocatalytic self-cleaning concrete. J Clean Prod 87:762–765

    Article  CAS  Google Scholar 

  • Singaravelu G, Arockiyamari J, Ganesh Kumar V, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57:97–101

    Article  CAS  PubMed  Google Scholar 

  • Son WK, Youk JH, Lee T, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibres with silver nanoparticles. Macromol Rapid Commun 25:1632–1637

    Article  CAS  Google Scholar 

  • Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nat Mater 3:610–614

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Usmani Z, Atanasov AG, Singh VK, Singh NP, Abdel-Azeem AM, Prasad R, Gupta G, Sharma M, Bhargava A (2021) Biological nanofactories: Using living forms for metal nanoparticle synthesis. Mini-Reviews in Medicinal Chemistry 21(2): 245–265

    Google Scholar 

  • Steffen K, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Zeng G, Liu J, Xu X, Zhang Y, Shen G et al (2008) Catechol determination in compost bioremediation using a laccase sensor and artificial neural networks. Anal Bioanal Chem 391:679–685

    Article  CAS  PubMed  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biomed 6:257–262

    Article  CAS  Google Scholar 

  • Thakare M, Sarma H, Datar S, Roy A, Pawar P, Gupta K, Pandit S, Prasad R (2021) Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil. Current Research in Biotechnology https://doi.org/10.1016/j.crbiot.2021.02.004

  • Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132

    Article  CAS  Google Scholar 

  • Tungittiplakorn W, Cohen C, Lion LW (2005) Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environ Sci Technol 39:1354–1358

    Article  CAS  PubMed  Google Scholar 

  • U.S. EPA. Handbook on in situ treatment of hazardous waste contaminated soils, EPA/540/2-90/002

    Google Scholar 

  • U.S. EPA Seminars. Bioremediation of hazardous waste sites: practical approach to implementation, EPA/625/K-96/001

    Google Scholar 

  • Undre SB, Singh M, Kale RK (2013a) Interaction behaviour of trimesoyl chloride derived 1st tier dendrimers determined with structural and physicochemical properties required for drug designing. J Mol Liq 182:106–120

    Article  CAS  Google Scholar 

  • Undre SB, Singh M, Kale RK, Rizwan M (2013b) Silibinin binding and release activitiesmoderated by interstices of trimesoyl, tridimethyl, and tridiethyl malonate first-tier dendrimers. J Appl Polm Sci 130:3537–3554

    Article  CAS  Google Scholar 

  • Vahabi K, Mansoori GL, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei (A route for large-scale production of agapes). Int Sci J 1:65–79

    CAS  Google Scholar 

  • Van der Bruggen B, Vandecasteele C (2003) Removal of pollutants from surface water and groundwater by nanofiltration overview of possible applications in the drinking water industry. Environ Pollut 122:435–445

    Article  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Wang S, Sun H, Ang HM, Tadé MO (2013) Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Rev Chem Eng 226:336–347

    Article  CAS  Google Scholar 

  • Wang W, Liao S, Liu M, Zhao Q, Zhu Y (2014) Polymer compositesre in forced by nanotubes as scaffolds for tissue engineering. Int J Polym Sci 2014:1–14

    Google Scholar 

  • Xu Y, Zhang WX (2000) Sub colloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. J Ind Eng Chem 39:2238–2244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Singh, N.S., Dhingra, N., Yadav, S., Aamir Khan, M. (2021). Recent Trends in Nanobioremediation. In: Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-54422-5_14

Download citation

Publish with us

Policies and ethics