Skip to main content

Amino Acid Nutrition for Optimum Growth, Development, Reproduction, and Health of Zoo Animals

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1285))

Abstract

Proteins are large polymers of amino acids (AAs) linked via peptide bonds, and major components for the growth and development of tissues in zoo animals (including mammals, birds, and fish). The proteinogenic AAs are alanine, arginine, aspartate, asparagine, cysteine, glutamate, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine. Except for glycine, they are all present in the L-isoform. Some carnivores may also need taurine (a nonproteinogenic AA) in their diet. Adequate dietary intakes of AAs are necessary for the growth, development, reproduction, health and longevity of zoo animals. Extensive research has established dietary nutrient requirements for humans, domestic livestock and companion animals. However, this is not true for many exotic or endangered species found in zoos due to the obstacles that accompany working with these species. Information on diets and nutrient profiles of free-ranging animals is needed. Even with adequate dietary intake of crude protein, dietary AAs may still be unbalanced, which can lead to nutrition-related diseases and disorders commonly observed in captive zoo species, such as dilated cardiomyopathy, urolithiasis, gut dysbiosis, and hormonal imbalances. There are differences in AA metabolism among carnivores, herbivores and omnivores. It is imperative to consider these idiosyncrasies when formulating diets based on established nutritional requirements of domestic species. With optimal health, populations of zoo animals will have a vastly greater chance of thriving in captivity. For endangered species especially, maintaining stable captive populations is crucial for conservation. Thus, adequate provision of AAs in diets plays a crucial role in the management, sustainability and expansion of healthy zoo animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AA:

amino acid

AAFCO:

Association of American Feed Control Officials

BCAA:

branched-chain amino acid

CP:

crude protein

DM:

dry matter

GABA:

γ-aminobutyrate

NRC:

National Research Council

References

  • Allen ME, Ullrey DE (2004) Relationships among nutrition and reproduction and relevance for wild animals. Zoo Biol 23:475–487

    Article  CAS  Google Scholar 

  • Amstberg G, Drochner W, Meyer H (1980) Influence of food composition on the intestinal flora of the dog. In: Nutrition of the dog and cat (RS Anderson ed). Pergamin Press, Oxford

    Google Scholar 

  • Anderson PA, Baker DH, Corbin JE, Helper LC (1979) Biochemical lesions associated with taurine deficiency in the cat. J Anim Sci 49:1227–1234

    Article  CAS  PubMed  Google Scholar 

  • Association of American Feed Control Officials (AAFCO) (2012) Official publication, 99th edn. AAFCO, Champaign

    Google Scholar 

  • Backus RC, Cohen G, Pion PD, Good KL, Rogers QR, Fascetti AJ (2003) Taurine deficiency in Newfoundlands fed commercially available complete and balanced diets. J Am Vet Med Assoc 223:1130–1136

    Article  CAS  PubMed  Google Scholar 

  • Baker DH (2007) Lysine, arginine, and related amino acids: an introduction to the 6th amino acid assessment workshop. J Nutr 137:1599S–1601S

    Article  CAS  PubMed  Google Scholar 

  • Baker DH, Czarnecki-Maulden GL (1991) Comparative nutrition of cats and dogs. Annu Rev Nutr 11:239–263

    Article  CAS  PubMed  Google Scholar 

  • Ball RO, Urschel KL, Pencharz PB (2007) Nutritional consequences of interspecies differences in arginine and lysine metabolism. J Nutr 137:1626S–1641S

    Article  CAS  PubMed  Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Article  CAS  PubMed  Google Scholar 

  • Beaumont M, Blachier F (2020) Amino acids in intestinal physiology and health. Adv Exp Med Biol 1265:1–20

    Google Scholar 

  • Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825

    Article  CAS  PubMed  Google Scholar 

  • Bergen WG (2020) Amino acids in beef cattle nutrition and production. Adv Exp Med Biol 1285:29–42

    Google Scholar 

  • Che DS, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G (2020) Amino acids in the nutrition, metabolism, and health of domestic cats. Adv Exp Med Biol 1285:217–231

    Google Scholar 

  • Chen JQ, Jin Y, Yang Y, Wu ZL, Wu G (2020) Epithelial dysfunction in lung diseases: effects of amino acids and potential mechanisms. Adv Exp Med Biol 1265:57–70

    Google Scholar 

  • Chesney RW, Hedberg G (2009) Rickets in lion cubs at the London zoo in 1889: some new insights. Pediatrics 123:e948–e950

    Article  PubMed  Google Scholar 

  • Crissey S, Pribyl L (2000) A review of nutritional deficiencies and toxicities in captive New World primates. Int Zoo Yb 37:355–360

    Article  Google Scholar 

  • Czuba B, Vessey DA (1981) Identification of a unique mammalian species of cholyl-CoA: amino acid N-acyltransferase. Biochim Biophys Acta 665:612–614

    Article  CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Jia SC, Wu G (2014) Analysis of amino acid composition in proteins of animal tissues and foods as pre-column o-phthaldialdehyde derivatives by HPLC with fluorescence detection. J Chromatogr B 964:116–127

    Article  CAS  Google Scholar 

  • de la Fe C, Rodriguez JM, Ramirez GA, Hervas J, Gil J, Poveda JB (2006) Sudden death associated with Clostridium sordelli in captive lions (Panthera leo). Vet Pathol 43:370–374

    Article  PubMed  Google Scholar 

  • Delport TC, Power ML, Harcourt RG, Webster KN, Tetu SG (2016) Colony location and captivity influence the gut microbial community composition of the Australian sea lion. Appl Environ Microbiol 82:3400–3449

    Article  CAS  Google Scholar 

  • Dierenfeld ES, Hintz HF, Robertson JB, Van Soest PJ, Oftedal OT (1982) Utilization of bamboo by the Giant panda. J Nutr 112:636–641

    Article  CAS  PubMed  Google Scholar 

  • Dierenfeld ES, Wedekind KJ, Middelbos I (2011) Ideal protein and zoo carnivores: further considerations for optimizing diets. In: Ward A, Coslik A, Maslanka M (eds) Proceedings of the ninth conference on zoo and wildlife nutrition. AZA Nutrition Advisory Group, Kansas City

    Google Scholar 

  • Edwards MS (2003) Nutrition of zoo animals. Recent Adv Anim Nutr Australia 14:1–9

    Google Scholar 

  • Enwonwu CO, Okolie EE (1983) Differential effects of protein malnutrition and ascorbic acid deficiency on histidine metabolism in the brains of infant nonhuman primates. J Neurochem 41:230–238

    Article  CAS  PubMed  Google Scholar 

  • Enwonwu CO, Worthington BS (1973) Regional distribution of homocarnosine and other ninhydrin positive substance in brains of malnourished monkeys. J Neurochem 21:799–807

    Article  CAS  PubMed  Google Scholar 

  • Fascetti AJ, Reed JR, Rogers QR, Backus RC (2003) Taurine deficiency in dogs with dilated cardiomyopathy: 12 cases (1997-2001). J Am Vet Med Assoc 223:1137–1141

    Article  CAS  PubMed  Google Scholar 

  • Flurer CI, Zucker H (1988) Coprophagy in marmosets due to insufficient protein (amino acid) intake. Lab Anim 22:330–331

    Google Scholar 

  • Gelatt KN (2014) Essentials of Veterinary Ophthalmology. Wiley, New York

    Google Scholar 

  • Gibson KM, Nguyen BN, Neumann LM, Miller M, Buss P, Daniels S, Ahn MJ, Crandall KA, Pukazhenthi B (2019) Gut microbiome differences between wild and captive black rhinoceros- implications for rhino health. Sci Rep 9:7570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbreath KR, Nawaratna GI, Wickersham TA, Satterfield MC, Bazer FW, Wu G (2020) Metabolic studies reveal that ruminal microbes of adult steers do not degrade rumen-protected or unprotected L-citrulline. J Anim Sci 98:skz370

    Google Scholar 

  • Guo W, Mishra S, Zhao J, Tang J, Zeng B, Kong F, Ning R, Li M, Zhang H, Zeng Y, Tian Y, Zhong Y, Luo H, Liu Y, Yang J, Yang M, Zhang M, Li Y, Ni Q, Li C, Wang C, Li D, Zhang H, Zuo Z, Li Y (2018) Metagenomic study suggests that the gut microbiota of the Giant panda (Ailuropoda melanoleuca) may not be specialized for fiber fermentation. Front Microbiol 9:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagey LR, Vidal N, Hofmann AF, Krasowski MD (2010) Evolutionary diversity of bile salts in reptiles and mammals, including analysis of ancient human and extinct giant ground sloth coprolites. BMC Evol Biol 10:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayes KC (1998) Taurine nutrition. Nutr Res Rev 1:99–113

    Article  Google Scholar 

  • He WL, Wu G (2020) Metabolism of amino acids in the brain and their roles in regulating food intake. Adv Exp Med Biol 1265:167–185

    Google Scholar 

  • He WL, Li P, Wu G (2020) Amino acid nutrition and metabolism in chickens. Adv Exp Med Biol 1285:109–131

    Google Scholar 

  • Hedberg GE, Dierenfeld ES, Rogers QR (2007) Taurine and zoo felids: considerations of dietary and biological tissue concentrations. Zoo Biol 26:517–531

    Article  CAS  PubMed  Google Scholar 

  • Hendriks WH, Moughan PJ, Tarttelin MF, Woolhouse AD (1995) Felinine: a urinary amino acid of Felidae. Comp Biochem Physiol B 112:581–588

    Article  CAS  PubMed  Google Scholar 

  • Hendriks WH, Vather R, Rutherfurd SM, Weidgraaf K, Rutherfurd-Markwick KJ (2004) Urinary isovalthine excretion in adult cats is not gender dependent or increased by oral leucine supplementation. J Nutr 134:2114S–2116S

    Article  CAS  PubMed  Google Scholar 

  • Hendriks WH, Rutherfurd-Markwick KJ, Weidgraaf K, Hugh Morton R, Rogers QR (2008) Urinary felinine excretion in intact male cats is increased by dietary cystine. Br J Nutr 100:801–809

    Article  CAS  PubMed  Google Scholar 

  • Herring CM, Bazer FW, Johnson GA, Wu G (2018) Impacts of maternal dietary protein intake on fetal survival, growth and development. Exp Biol Med 243:525–533

    Article  CAS  Google Scholar 

  • Hofmann AF, Hagey LR, Matthew D. Krasowski MD (2010) Bile salts of vertebrates: structural variation and possible evolutionary significance. J Lipid Res 51:226–246

    Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Wu G (2018) L-glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Yin Y, Wu G (2015) Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou YQ, Yao K, Yin YL, Wu G (2016) Endogenous synthesis of amino acids limits growth, lactation and reproduction of animals. Adv Nutr 7:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, Hu SD, Li XY, He WL, Wu G (2020) Amino acid metabolism in the liver: nutritional and physiological significance. Adv Exp Med Biol 1265:21–37

    Google Scholar 

  • Jacobsen JG, Smith LH (1968) Biochemistry and physiology of taurine and taurine derivatives. Physiol Rev 48:424–511

    Article  CAS  PubMed  Google Scholar 

  • Jia SC, Li XY, Zheng SX, Wu G (2017) Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49:2053–2063

    Article  CAS  PubMed  Google Scholar 

  • Kahn CM, Line S (2005) Merck Veterinary Manual, 9th edn. Merck & Co, Whitehouse Station

    Google Scholar 

  • Kerr KR, Kappen KL, Garner LM, Utterback PL, Parsons CM, Swanson KS (2014) Commercially available avian and mammalian whole prey diet items targeted for consumption by managed exotic and domestic pet felines: true metabolizable energy and amino acid digestibility using the precision-fed cecectomized rooster assay. J Anim Sci 92:4478–4485

    Article  CAS  PubMed  Google Scholar 

  • King GJ (1978) Comparative feeding and nutrition in captive, non-human primates. Br J Nutr 40:55–62

    Article  CAS  PubMed  Google Scholar 

  • Kleiman DG, Thompson KV, Baer CK (2010) Wild mammals in captivity. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kodama H, Yamamoto M, Sasaki K (1980) Isotachophoretic analysis of some sulfur-containing amino acids in human urine. J Chromatogr B 183:226–228

    Article  CAS  Google Scholar 

  • Kuwaki T, Ohmori S, Mizuhara S (1963) Biosynthesis of isovalthine precursor in liver homogenates. Biochim Biophys Acta 78:553–555

    Article  CAS  PubMed  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW, Wu G (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Zheng SX, Wu G (2020a) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–691

    Google Scholar 

  • Li XY, Han T, Zheng SX, Wu G (2020b) Nutrition and functions of amino acids in aquatic crustaceans. Adv Exp Med Biol 1285:169–197

    Google Scholar 

  • Li XY, Zheng SX, Wu G (2020c) Nutrition and functions of amino acids in fish. Adv Exp Med Biol 1285:133–168

    Google Scholar 

  • Liu N, Chen JQ, He Y, Jia H, Jiang D, Li S, Yang Y, Dai ZL, Wu ZL, Wu G (2020) Effects of maternal L-proline supplementation on inflammatory cytokines at the placenta and fetus interface of mice. Amino Acids 52:587–596

    Article  CAS  PubMed  Google Scholar 

  • Lubbs DC, Vester BM, Fastinger ND, Swanson KS (2009) Dietary protein concentration affects intestinal microbiota of adult cats: a study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J Anim Physiol Anim Nutr 93:113–121

    Article  CAS  Google Scholar 

  • MacDonald ML, Rogers QR, Morris JG (1984) Nutrition of the domestic cat, a mammalian carnivore. Annu Rev Nutr 4:521–562

    Article  CAS  PubMed  Google Scholar 

  • Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K (2017) Links between dietary protein sources, the gut microbiota, and obesity. Front Physiol 8:1047

    Google Scholar 

  • Miyazaki M, Yamashita T, Taira H, Suzuki A (2008) The biological function of cauxin, a major urinary protein of the domestic cat. In: Hurst JL, Beynon RJ, Roberts SC, Wyatt TD (eds) Chemical signals in vertebrates, vol 11. Springer, New York, pp 51–60

    Google Scholar 

  • Mizuhara S, Oomori S (1961) A new sulfur-containing amino acid. Arch Biochem Biophys 92:53–57

    Article  CAS  PubMed  Google Scholar 

  • Nofs SA, Dierenfeld ES, Backus RC (2018) Effect of increasing taurine and methionine supplementation of urinary taurine excretion in a model insectivore, the giant anteater (Myrmecophaga tridactyla). J Anim Physiol Anim Nutr 102:316–325

    Article  CAS  Google Scholar 

  • NRC (National Research Council) (1978) Nutrient requirements of nonhuman Primates. National Academy of Sciences, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (1982) Nutrient requirements of mink and foxes, 2nd edn. National Academies Press, Washington, DC

    Google Scholar 

  • NRC (National Research Council) (2006) Nutrient requirements of dogs and cats. National Academy Press, Washington, DC

    Google Scholar 

  • Oberbauer AM, Larsen JA (2020) Amino acids in dog nutrition and health. Adv Exp Med Biol 1285:199–216

    Google Scholar 

  • Oomori S, Mizuhara S (1962) Structure of a new sulfur-containing amino acid. Arch Bichem Biophys 96:179–185

    Article  CAS  Google Scholar 

  • Phipps A, Edwards M (2009) Diets offered to maned wolves (Chrysocyon brachyurus) in North American zoos: a review and analysis. In: Ward A, Treiber K, Schmidt D, Coslik A, Maslanka M (eds) Proceedings of the eighth conference on zoo and wildlife nutrition. AZA Nutrition Advisory Group, Tulsa. pp 1–23

    Google Scholar 

  • Pritchard GT, Robbins CT (1990) Digestive efficiencies of grizzly and black bears. Can J Zool 68:645–1651

    Article  Google Scholar 

  • Ren WK, Bin P, Yin YL, Wu G (2020) Impacts of amino acids on the intestinal defensive system. Adv Exp Med Biol 1265:133–151

    Google Scholar 

  • Rutherfurd KJ, Rutherfurd SM, Moughan PJ, Hendriks WH (2002) Isolation and characterization of a felinine-containing peptide from the blood of the domestic cat (felis catus). J Biol Chem 277:114–119

    Article  CAS  PubMed  Google Scholar 

  • Rutherfurd-Markwick KJ, Rogers QR, Hendriks WH (2005) Mammalian isovalthine metabolism. J Anim Physiol Anim Nutr (Berl) 89:1–10

    Article  CAS  Google Scholar 

  • Sanderson SL, Osborne CA, Lulich JP, Bartges JW, Pierpont ME, Ogburn PN, Kohler LA, Swanson LL, Bird KA, Ulrich LK (2001) Evaluation of urinary carnitine and taurine excretion in cystinuric dogs with carnitine and taurine deficiency. J Vet Intern Med 15:94–100

    Article  CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2013) Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep. Amino Acids 45:489–499

    Article  CAS  PubMed  Google Scholar 

  • Schaller GB, Hu J, Pan W, Zhu J (1985) The giant pandas of Wolong, 1st edn. University of Chicago Press, Chicago

    Google Scholar 

  • Schermerhorn T (2013) Normal glucose metabolism in carnivores overlaps with diabetes pathology in non-carnivores. Front Endocrinol 4:188

    Article  Google Scholar 

  • Schmidt DA, Schlegel ML (2005) New feeding recommendations for giraffe. In: Schmidt DA, Barbiers R (eds) Giraffe nutrition workshop proceeding. Lincoln Park Zoo, Chicago, pp 18–32

    Google Scholar 

  • Schmidt DA, Ball RL, Grobler D, Ellersieck MR, Griffin ME, Citino SB, Bush M (2007) Serum concentrations of amino acids, fatty acids, lipoproteins, vitamins a and E, and minerals in apparently healthy, free-ranging southern giraffe (Giraffa camelopardalis giraffe). Zoo Biol 26:13–25

    Article  CAS  PubMed  Google Scholar 

  • Schmidt DA, Koutsos EA, Ellersieck MR, Griffin ME (2009) Serum concentration comparisons of amino acids, fatty acids, lipoproteins, vitamins a and E, and minerals between zoo and free-ranging giraffes (giraffa camelopardalis). J Zoo Wildl Med 40:29–38

    Article  PubMed  Google Scholar 

  • Solano F (2020) Metabolism and functions of amino acids in the skin. Adv Exp Med Biol 1265:187–199

    Google Scholar 

  • Sturman JA, Hayes KC (1980) The biology of taurine in nutrition and development. Adv Nutr Res 3:231–299

    Article  CAS  Google Scholar 

  • Taylor KM, Snyder SH (1972) Dynamics of the regulation of histamine levels in mouse brain. J Neurochem 19:341–354

    Article  CAS  PubMed  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL, Yang Y, Wang JJ, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Sun SQ, Liu MY, Chen H, Liu N, Wu ZL, Wu G, Dai ZL (2020) Dietary L-tryptophan supplementation regulates colonic serotonin homeostasis and inhibits gut inflammation in mice with dextran sodium sulfate-induced colitis. J Nutr 150:1966-1976

    Google Scholar 

  • Wasimuddin MS, Melzheimer J, Thalwitzer S, Heinrich S, Wachter B, Sommer S (2017) Gut microbiomes of free-ranging and captive Namibian cheetahs: diversity, putative functions and occurrence of potential pathogens. Mol Ecol 26:5525–5527

    Article  Google Scholar 

  • Westall RG (1953) The amino acids and other ampholytes of urine. 2. The isolation of a new Sulphur-containing amino acid from cat urine. Biochem J 55:244–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright CE, Tallan HH, Lin YY (1986) Taurine: biological update. Annu Rev Biochem 55:427–453

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2005) Rumen physiology of digestion in ruminants. In: Schmidt DA, Barbiers R (eds) Giraffe nutrition workshop proceeding. Lincoln Park Zoo, Chicago, p 34

    Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton, p 2013

    Book  Google Scholar 

  • Wu G (2014) Dietary requirements of synthesizable amino acids by animals: a paradigm shift in protein nutrition. J Anim Sci Biotechnol 5:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu G (2016) Dietary protein intake and human health. Food Funct 7:1251–1265

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton, p 2018

    Google Scholar 

  • Wu G (2020a) Management of metabolic disorders (including metabolic diseases) in ruminant and nonruminant animals. In: Bazer FW, Lamb GC, Wu G (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 471–492

    Chapter  Google Scholar 

  • Wu G (2020b) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2020c) Metabolism and functions of amino acids in sense organs. Adv Exp Med Biol 1265:201-217

    Google Scholar 

  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Li XL, Satterfield MC, Spencer TE (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88:E195–E204

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li XL, Wang JJ (2011) Important roles for L-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Burghardt RC, Li XL, Dai ZL, Wang JJ, Wu ZL (2013) Maternal and fetal amino acid metabolism in gestating sows. Soc Reprod Fertil Suppl 68:185–198

    Google Scholar 

  • Wu G, Bazer FW, Dai ZL, Li DF, Wang JJ, Wu ZL (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Google Scholar 

  • Wu G, Cross HR, Gehring KB, Savell JW, Arnold AN, McNeill SH (2016) Composition of free and peptide-bound amino acids in beef chuck, loin, and round cuts. J Anim Sci 94:2603–2613

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai ZL, Wang JJ, Wu ZL, Wang XL (2017) Functional amino acids in the development of the pig placenta. Mol Reprod Dev 84:879–882

    Article  CAS  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou YQ (2018) Arginine nutrition and metabolism in growing, gestating and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu ZL, Hou YQ, Dai ZL, Hu CA, Wu G (2019) Metabolism, nutrition and redox signaling of hydroxyproline. Antioxid Redox Signal 30:674–682

    Article  CAS  PubMed  Google Scholar 

  • Xue Z, Zhang W, Wang L, Hou R, Zhang M, Fei L, Zhang X, Huang H, Bridgewater LC, Jiang Y, Jiang C, Zhao L, Pang X, Zhang Z (2015) The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. MBio 6(3):e00022–e00015 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young VR and Borgonha S (2000) Nitrogen and amino acid requirements: the Massachusetts Institute of Technology amino acid requirement pattern. J Nutr 130:1841S–1849S

    Google Scholar 

  • Zhang H, Li D, Wang C, Hull V (2009) Delayed implantation in giant pandas: the first comprehensive empirical evidence. Reproduction 138:979–986

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang Z, Li Z, Hong M, Zhou X, Zhou S, Zhang J, Hull V, Huang J, Zhang H (2018) Giant panda foraging and movement patterns in response to bamboo shoot growth. Environ Sci Pollut Res 25:8636–8643

    Article  Google Scholar 

  • Zhang JM, He WL, Yi D, Zhao D, Song Z, Hou YQ, Wu G (2019) Regulation of protein synthesis in porcine mammary epithelial cells by L-valine. Amino Acids 51:717–726

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Hou YQ, Bazer FW, He WL, Posey EA, Wu G (2020) Amino acids in swine nutrition and production. Adv Exp Med Biol 1285:81–107

    Google Scholar 

  • Zhu LF, Wu Q, Dai JY, Zhang SN, Wei FW (2011) Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA 108:17714–17719

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Cheryl Morris for helpful discussion on the nutrition of zoo animals. This work was supported by Texas A&M AgriLife Research (H-8200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Herring, C.M., Bazer, F.W., Wu, G. (2021). Amino Acid Nutrition for Optimum Growth, Development, Reproduction, and Health of Zoo Animals. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_12

Download citation

Publish with us

Policies and ethics