Skip to main content

Amino Acids in Swine Nutrition and Production

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1285))

Abstract

Amino acids are the building blocks of proteins in animals, including swine. With the development of new analytical methods and biochemical research, there is a growing interest in fundamental and applied studies to reexamine the roles and usage of amino acids (AAs) in swine production. In animal nutrition, AAs have been traditionally classified as nutritionally essential (EAAs) or nutritionally nonessential (NEAAs). AAs that are not synthesized de novo must be provided in diets. However, NEAAs synthesized by cells of animals are more abundant than EAAs in the body, but are not synthesized de novo in sufficient amounts for the maximal productivity or optimal health (including resistance to infectious diseases) of swine. This underscores the conceptual limitations of NEAAs in swine protein nutrition. Notably, the National Research Council (NRC 2012) has recognized both arginine and glutamine as conditionally essential AAs for pigs to improve their growth, development, reproduction, and lactation. Results of recent work have also provided compelling evidence for the nutritional essentiality of glutamate, glycine, and proline for young pigs. The inclusion of so-called NEAAs in diets can help balance AAs in diets, reduce the dietary levels of EAAs, and protect the small intestine from oxidative stress, while enhancing the growth performance, feed efficiency, and health of pigs. Thus, both EAAs and NEAAs are needed in diets to meet the requirements of pigs. This notion represents a new paradigm shift in our understanding of swine protein nutrition and is transforming pork production worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

amino acid

ASL:

argininosuccinate lyase

ASS:

argininosuccinate synthase

BCAA:

branched-chain amino acid

BCAT:

BCAA transaminase

BCKA:

branched-chain α-ketoacid dehydrogenase

BW:

body weight

EAA:

nutritionally essential amino acid

FAA:

functional amino acid

GDH:

glutamate dehydrogenase

GFAT:

glutamine: fructose-6-phosphate transaminase

IDO:

indoleamine 2,3-dioxygenase

IUGR:

intrauterine growth restriction

KIC:

α-ketoisocaproate

mTOR:

mechanistic target of rapamycin

NEAA:

nutritionally nonessential amino acid

NO:

nitric oxide

NOS:

nitric oxide synthase

NRC:

National Research Council

OAT:

ornithine aminotransferase

ODC:

ornithine decarboxylase

OH-POX:

hydroxyproline oxidase

P5C:

pyrroline-5-carboxylate

POX:

proline oxidase

SHMT:

serine hydroxymethyltransferase

α-KG :

α-ketoglutarate

References

  • Abderhalden E (1912) Experiment on the feeding with completely degraded nutrition substances. Z Phys Chem 77:22–58

    CAS  Google Scholar 

  • Adams E, Frank L (1980) Metabolism of proline and the hydroxyprolines. Annu Rev Biochem 49:1005–1061

    Article  CAS  PubMed  Google Scholar 

  • Al-Sadi R, Ye D, Said HM, Ma TY (2010) IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol 177:2310–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Badawy AA (2015) Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 35:5

    Article  CAS  Google Scholar 

  • Bai M, Liu H, Xu K, Oso AO, Wu X, Liu G, Tossou MC, Al-Dhabi NA, Duraipandiyan V, Xi Q, Yin Y (2017) A review of the immunomodulatory role of dietary tryptophan in livestock and poultry. Amino Acids 49:67–74

    Article  CAS  PubMed  Google Scholar 

  • Ballevre O, Cadenhead A, Calder AG, Rees WD, Lobley GE, Fuller MF, Garlick PJ (1990) Quantitative partition of threonine oxidation in pigs: effect of dietary threonine. Am J Physiol 259:E483–E491

    Google Scholar 

  • Bazer FW, Johnson GA, Wu G (2015) Amino acids and conceptus development during the peri-implantation period of pregnancy. Adv Exp Med Biol 843:23–52

    Google Scholar 

  • Bertolo RF, Brunton JA, Pencharz PB, Ball RO (2003) Arginine, ornithine, and proline interconversion is dependent on small intestinal metabolism in neonatal pigs. Am J Physiol 284:E915–E922

    Google Scholar 

  • Bhutia YD, Babu E, Ganapathy V (2015) Interferon-gamma induces a tryptophan-selective amino acid transporter in human colonic epithelial cells and mouse dendritic cells. Biochim Biophys Acta 1848:453–462

    Article  CAS  PubMed  Google Scholar 

  • Blachier F, Guihot-Joubrel G, Vaugelade P, Le Boucher J, Bernard F, Duee P, Cynober L (1999) Portal hyperglutamatemia after dietary supplementation with monosodium glutamate in pigs. Digestion 60:349–357

    Article  CAS  PubMed  Google Scholar 

  • Brown RR, Ozaki Y, Datta SP, Borden EC, Sondel PM, Malone DG (1991) Implications of interferon-induced tryptophan catabolism in cancer, auto-immune diseases and AIDS. Adv Exp Med Biol 294:425–435

    Article  CAS  PubMed  Google Scholar 

  • Che L, Xu M, Gao K, Wang L, Yang X, Wen X, Xiao H, Jiang Z, Wu D (2019) Valine supplementation during late pregnancy in gilts increases colostral protein synthesis through stimulating mTOR signaling pathway in mammary cells. Amino Acids 51:1547–1559

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Li P, Wang J, Li X, Gao H, Yin Y, Hou Y, Wu G (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Shi X, Gan F, Huang D, Huang K (2015) Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels. Vet Res 46:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen JQ, Li YS, Li ZJ, Lu HX, Zhu PQ, Li CM (2018) Dietary l-arginine supplementation improves semen quality and libido of boars under high ambient temperature. Animal 12:1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Columbus DA, Fiorotto ML, Davis TA (2015) Leucine is a major regulator of muscle protein synthesis in neonates. Amino Acids 47:259–270

    Article  CAS  PubMed  Google Scholar 

  • Corl BA, Odle J, Niu X, Moeser AJ, Gatlin LA, Phillips OT, Blikslager AT, Rhoads JM (2008) Arginine activates intestinal p70(S6k) and protein synthesis in piglet rotavirus enteritis. J Nutr 138:24–29

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P (2005) Molecular mechanisms of glutamine action. J Cell Physiol 204:392–401

    Article  CAS  PubMed  Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    Article  CAS  PubMed  Google Scholar 

  • Edmonds MS, Gonyou HW, Baker DH (1997) Effect of excess levels of methionine, tryptophan, arginine, lysine or threonine on growth and dietary choice in the pig. J Anim Sci 65:179–185

    Article  Google Scholar 

  • Ettle T, Roth FX (2004) Specific dietary selection for tryptophan by the piglet. J Anim Sci 82:1115–1121

    Article  CAS  PubMed  Google Scholar 

  • Fan X, Li S, Wu Z, Dai Z, Li J, Wang X, Wu G (2019) Glycine supplementation to breast-fed piglets attenuates post-weaning jejunal epithelial apoptosis: a functional role of CHOP signaling. Amino Acids 51:463–473

    Article  CAS  PubMed  Google Scholar 

  • Flower WL (2020) Reproductive management of swine. In: Bazer FW, Lamb GC, Wu G (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 283–297

    Chapter  Google Scholar 

  • Flynn N, Wu G (1996) An important role for endogenous synthesis of arginine in maintaining arginine homeostasis in neonatal pigs. Am J Physiol 271:R1149–R1155

    Google Scholar 

  • Flynn NE, Wu G (1997) Enhanced metabolism of arginine and glutamine in enterocytes of cortisol-treated pigs. Am J Physiol 272:G474–G480

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2018) Food Outlook. FAO, Rome

    Google Scholar 

  • Funahashi H (2002) Induction of capacitation and the acrosome reaction of boar spermatozoa by L-arginine and nitric oxide synthesis associated with the anion transport system. Reproduction 124:857–864

    Article  CAS  PubMed  Google Scholar 

  • Getty CM, Almeida FN, Baratta AA, Dilger RN (2015) Plasma metabolomics indicates metabolic perturbations in low birth weight piglets supplemented with arginine. J Anim Sci 93:5754–5763

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Anover P, Gonzalez-Bulnes A (2017) Maternal age modulates the effects of early-pregnancy L-proline supplementation on the birth-weight of piglets. Anim Reprod Sci 181:63–68

    Article  CAS  PubMed  Google Scholar 

  • Haynes TE, Li P, Li X, Shimotori K, Sato H, Flynn NE, Wang J, Knabe DA, Wu G (2009) L-Glutamine or L-alanyl-L-glutamine prevents oxidant- or endotoxin-induced death of neonatal enterocytes. Amino Acids 37:131–142

    Article  CAS  PubMed  Google Scholar 

  • He WL, Furukawa K, Leyva-Jimenez H, Bailey CA, Wu G (2018) Oxidation of energy substrates by enterocytes of 0- to 42-day-old chickens. Poult Sci 97(E-Suppl 1):3

    Google Scholar 

  • He WL, Hou YQ, Wu G (2019a) Glutamate and glutamine are the major metabolic fuels in enterocytes of suckling piglets. J Anim Sci 97(Suppl 3):68

    Article  PubMed Central  Google Scholar 

  • He WL, Posey EA, Wu G (2019b) Dietary supplementation with glycine improves the post-weaning growth of low-birth-weight pigs. J Anim Sci 97(Suppl 3):112

    Article  PubMed Central  Google Scholar 

  • Hou YQ, Wu G (2017) Nutritionally nonessential amino acids: a misnomer in nutritional sciences. Adv Nutr 8:137–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou YQ, Wu G (2018a) Nutritionally essential amino acids. Adv Nutr 9:849–851

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Wu G (2018b) L-Glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    Article  CAS  PubMed  Google Scholar 

  • Hou Y, Yin Y, Wu G (2015) Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    Article  CAS  Google Scholar 

  • Hou Y, Yao K, Yin Y, Wu G (2016a) Endogenous synthesis of amino acids limits growth, lactation, and reproduction in animals. Adv Nutr 7:331–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y, Hu S, Jia S, Nawaratna G, Che D, Wang F, Bazer FW, Wu G (2016b) Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine. Amino Acids 48:993–1001

    Article  CAS  PubMed  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    Article  CAS  PubMed  Google Scholar 

  • Hu CA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian Delta1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem 274:6754–6762

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Li X, Rezaei R, Meininger CJ, McNeal CJ, Wu G (2015) Safety of long-term dietary supplementation with L-arginine in pigs. Amino Acids 47:925–936

    Article  CAS  PubMed  Google Scholar 

  • Hu CJ, Jiang QY, Zhang T, Yin YL, Li FN, Deng JP, Wu GY, Kong XF (2017a) Dietary supplementation with arginine and glutamic acid modifies growth performance, carcass traits, and meat quality in growing-finishing pigs. J Anim Sci 95:2680–2689

    CAS  PubMed  Google Scholar 

  • Hu S, Nawaratna G, Long BD, Bazer FW, Johnson GA, Brosnan JT, Wu G (2017b) The hydroxyproline–glycine pathway for glycine synthesis in neonatal pigs. J Anim Sci 95(Suppl. 4):45

    Article  Google Scholar 

  • Hu C, Li F, Duan Y, Kong X, Yan Y, Deng J, Tan C, Wu G, Yin Y (2019) Leucine alone or in combination with glutamic acid, but not with arginine, increases biceps femoris muscle and alters muscle AA transport and concentrations in fattening pigs. J Anim Physiol Anim Nutr (Berl) 103:791–800

    Article  CAS  Google Scholar 

  • Ikeda K, Yamasaki H, Minami S, Suzuki Y, Tsujimoto K, Sekino Y, Irie H, Arakawa T, Koyama AH (2012) Arginine inactivates human herpesvirus 2 and inhibits genital herpesvirus infection. Int J Mol Med 30:1307–1312

    Article  CAS  PubMed  Google Scholar 

  • Ji Y, Wu Z, Dai Z, Wang X, Li J, Wang B, Wu G (2017) Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J Anim Sci Biotechnol 8:42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Q, Chen J, Liu S, Liu G, Yao K, Yin Y (2017) L-Glutamine attenuates apoptosis induced by endoplasmic reticulum stress by activating the IRE1alpha-XBP1 axis in IPEC-J2: a novel mechanism of L-glutamine in promoting intestinal health. Int J Mol Sci 18:2617

    Google Scholar 

  • Jiao N, Wu Z, Ji Y, Wang B, Dai Z, Wu G (2015) L-Glutamate enhances barrier and antioxidative functions in intestinal porcine epithelial cells. J Nutr 145:2258–2264

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Wu G (2004) Dietary arginine supplementation enhances the growth of milk-fed young pigs. J Nutr 134:625–630

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Hurley WL, Wu G, Ji F (2009) Ideal amino acid balance for sows during gestation and lactation. J Anim Sci 87(14 Suppl):E123–E132

    Article  CAS  PubMed  Google Scholar 

  • Kong XF, Zhou XL, Feng ZM, Li FN, Ji YJ, Tan BE, Liu YY, Geng MM, Wu GY, Blachier F, Yin YL (2015) Dietary supplementation with monosodium L-glutamate modifies lipid composition and gene expression related to lipid metabolism in growing pigs fed a normal-or high-fat diet. Livest Sci 180:247–252

    Article  Google Scholar 

  • Krebs HA (1935) Metabolism of amino-acids: the synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J 29:1951–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamers Y, Williamson J, Gilbert LR, Stacpoole PW, Gregory JF (2007) Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-13C2]glycine and [2H3]leucine. J Nutr 137:2647–2652

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laspiur JP, Trottier NL (2001) Effect of dietary arginine supplementation and environmental temperature on sow lactation performance. Livest Prod Sci 70:159–165

    Article  Google Scholar 

  • Le Floc’h N, Gondret F, Matte JJ, Quesnel H (2012) Towards amino acid recommendations for specific physiological and patho-physiological states in pigs. Proc Nutr Soc 71:425–432

    Article  PubMed  CAS  Google Scholar 

  • Le Floc’h N, Wessels A, Corrent E, Wu G, Bosi P (2018) The relevance of functional amino acids to support the health of growing pigs. Anim Feed Sci Technol 245:104–116

    Article  CAS  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    Article  CAS  PubMed  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Article  CAS  PubMed  Google Scholar 

  • Li P, Yin YL, Li DF, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 98:237–252

    Article  CAS  PubMed  Google Scholar 

  • Li P, Knabe DA, Kim SW, Lynch CJ, Hutson SM, Wu G (2009) Lactating porcine mammary tissue catabolizes branched-chain amino acids for glutamine and aspartate synthesis. J Nutr 139:1502–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XL, Rezaei R, Li P, Wu G (2011a) Composition of amino acids in feed ingredients for animal diets. Amino Acids 40:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Li F, Yin Y, Tan B, Kong X, Wu G (2011b) Leucine nutrition in animals and humans: mTOR signaling and beyond. Amino Acids 41:1185–1193

    Article  CAS  PubMed  Google Scholar 

  • Li X, Bazer FW, Johnson GA, Burghardt RC, Frank JW, Dai Z, Wang J, Wu Z, Shinzato I, Wu G (2014) Dietary supplementation with L-arginine between days 14 and 25 of gestation enhances embryonic development and survival in gilts. Amino Acids 46:375–384

    Article  CAS  PubMed  Google Scholar 

  • Li J, Xia H, Yao W, Wang T, Li J, Piao X, Thacker P, Wu G, Wang F (2015) Effects of arginine supplementation during early gestation (day 1 to 30) on litter size and plasma metabolites in gilts and sows. J Anim Sci 93:5291–5303

    Article  CAS  PubMed  Google Scholar 

  • Li W, Sun K, Ji Y, Wu Z, Wang W, Dai Z, Wu G (2016a) Glycine regulates expression and distribution of claudin-7 and ZO-3 proteins in intestinal porcine epithelial cells. J Nutr 146:964–969

    Google Scholar 

  • Li XG, Sui WG, Gao CQ, Yan HC, Yin YL, Li HC, Wang XQ (2016b) L-Glutamate deficiency can trigger proliferation inhibition via down regulation of the mTOR/S6K1 pathway in pig intestinal epithelial cells. J Anim Sci 94:1541–1549

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Dai Z, Liu N, Ji Y, Chen J, Zhang Y, Yang Y, Li J, Wu Z, Wu G (2018) Dietary L-tryptophan modulates the structural and functional composition of the intestinal microbiome in weaned piglets. Front Microbiol 9:1736

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang H, Dai Z, Kou J, Sun K, Chen J, Yang Y, Wu G, Wu Z (2019) Dietary l-Tryptophan supplementation enhances the intestinal mucosal barrier function in weaned piglets: implication of tryptophan-metabolizing microbiota. Int J Mol Sci 20:20

    Article  CAS  Google Scholar 

  • Lin M, Zhang B, Yu C, Li J, Zhang L, Sun H, Gao F, Zhou G (2014) L-Glutamate supplementation improves small intestinal architecture and enhances the expressions of jejunal mucosa amino acid receptors and transporters in weaning piglets. PLoS One 9:e111950

    Google Scholar 

  • Liu D, Lin J, Su J, Chen X, Jiang P, Huang K (2018a) Glutamine Deficiency Promotes PCV2 Infection through Induction of Autophagy via Activation of ROS-Mediated JAK2/STAT3 Signaling Pathway. J Agric Food Chem 66:11757–11766

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Ma X, Luo X, Zhang Y, He Y, Dai Z, Yang Y, Wu G, Wu Z (2018b) L-Glutamine attenuates apoptosis in porcine enterocytes by regulating glutathione-related redox homeostasis. J Nutr 148:526–534

    Article  PubMed  Google Scholar 

  • Liu N, Dai ZL, Zhang YC, Chen JQ, Yang Y, Wu G, Tso P, Wu ZL (2019a) Maternal L-proline supplementation enhances fetal survival and placental nutrient transport in mice. Biol Reprod 100:1073–1081

    Article  PubMed  Google Scholar 

  • Liu N, Dai ZL, Jia H, Zhang YC, Chen JQ, Sun SQ, Wu G, Wu ZL (2019b) Maternal L-proline supplementation during gestation alters amino acid and polyamine metabolism in the first generation female offspring of C57BL/6J mice. Amino Acids 51:805–811

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Chen JQ, He Y, Jia H, Jiang D, Li S, Yang Y, Dai ZL, Wu ZL, Wu G (2020) Effects of maternal L-proline supplementation on inflammatory cytokines at the placenta and fetus interface of mice. Amino Acids 52:587–596

    Article  CAS  PubMed  Google Scholar 

  • Long DW, Wu N, He W, Nawaratna G, Long BD, Bin W, Hu S, Wu G (2017) Oral administration of L-arginine hydrochloride to low-birth-weight piglets improves their growth and survival. J Anim Sci 95(Suppl 4):57

    Article  Google Scholar 

  • Ma X, Lin Y, Jiang Z, Zheng C, Zhou G et al (2010) Dietary arginine supplementation enhances antioxidative capacity and improves meat quality of finishing pigs. Amino Acids 38:95–102

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Hu S, Bannai M, Wu G (2018) L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis. Amino Acids 50:621–628

    Article  CAS  PubMed  Google Scholar 

  • Mao X, Liu M, Tang J, Chen H, Chen D, Yu B, He J, Yu J, Zheng P (2015) Dietary leucine supplementation improves the mucin production in the jejunal mucosa of the weaned pigs challenged by porcine rotavirus. PLoS One 10:e0137380

    Google Scholar 

  • Mateo RD, Wu G, Bazer FW, Park JC, Shinzato I, Kim SW (2007) Dietary L-arginine supplementation enhances the reproductive performance of gilts. J Nutr 137:652–656

    Article  CAS  PubMed  Google Scholar 

  • Mateo RD, Wu G, Moon HK, Carroll JA, Kim SW (2008) Effects of dietary arginine supplementation during gestation and lactation on the performance of lactating primiparous sows and nursing piglets. J Anim Sci 86:827–835

    Article  CAS  PubMed  Google Scholar 

  • McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G (2018) Safety of dietary supplementation with arginine in adult humans. Amino Acids 50:1215–1229

    Article  CAS  PubMed  Google Scholar 

  • Meininger CJ, Wu G (2002) Regulation of endothelial cell proliferation by nitric oxide. Methods Enzymol 352:280–295

    Article  CAS  PubMed  Google Scholar 

  • Moser SA, Tokach MD, Dritz SS, Goodband RD, Nelssen JL, Loughmiller JA (2000) The effects of branched-chain amino acids on sow and litter performance. J Anim Sci 78:658–667

    Article  CAS  PubMed  Google Scholar 

  • Naito T, Irie H, Tsujimoto K, Ikeda K, Arakawa T, Koyama AH (2009) Antiviral effect of arginine against herpes simplex virus type 1. Int J Mol Med 23:495–499

    Article  CAS  PubMed  Google Scholar 

  • National Research Council (NRC (2012) Nutrient requirements of swine. National Academy Press, Washington, DC

    Google Scholar 

  • Nissen SL, Abumrad NN (1997) Nutritional role of the leucine metabolite β-hydroxy β-methylbutyrate (HMB). J Nutr Biochem 8:300–311

    Article  CAS  Google Scholar 

  • O’Quinn PR, Knabe DA, Wu G (2002) Arginine catabolism in lactating porcine mammary tissue. J Anim Sci 80:467–474

    Article  PubMed  Google Scholar 

  • Paulicks BR, Ott H, Roth-Maier DA (2003) Performance of lactating sows in response to the dietary valine supply. J Anim Physiol Anim Nutr (Berl) 87:389–396

    Article  CAS  Google Scholar 

  • Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    Article  CAS  PubMed  Google Scholar 

  • Phang JM (1985) The regulatory functions of proline and pyrroline-5-carboxylic acid. Curr Top Cell Regul 25:91–132

    Article  CAS  PubMed  Google Scholar 

  • Pi D, Liu Y, Shi H, Li S, Odle J, Lin X, Zhu H, Chen F, Hou Y, Leng W (2014) Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. J Nutr Biochem 25:456–462

    Article  CAS  PubMed  Google Scholar 

  • Qin Q, Xu X, Wang X, Wu H, Zhu H, Hou Y, Dai B, Liu X, Liu Y (2018) Glutamate alleviates intestinal injury, maintains mTOR and suppresses TLR4 and NOD signaling pathways in weanling pigs challenged with lipopolysaccharide. Sci Rep 8:15124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quiniou N, Dagorn J, Gaudre D (2002) Variation of piglets’ birth weight and consequences on subsequent performance. Livest Prod Sci 78:63–70

    Article  Google Scholar 

  • Rabbani MAG, Barik S (2017) 5-Hydroxytryptophan, a major product of tryptophan degradation, is essential for optimal replication of human parainfluenza virus. Virology 503:46–51

    Article  CAS  PubMed  Google Scholar 

  • Radogna F, Diederich M, Ghibelli L (2010) Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol 80:1844–1852

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Knabe DA, Tekwe CD, Dahanayaka S, Ficken MD, Fielder SE, Eide SJ, Lovering SL, Wu G (2013) Dietary supplementation with monosodium glutamate is safe and improves growth performance in postweaning pigs. Amino Acids 44:911–923

    Article  CAS  PubMed  Google Scholar 

  • Rezaei R, Wu ZL, Hou YQ, Bazer FW, Wu G (2016) Amino acids and mammary gland development: nutritional implications for neonatal growth. J Anim Sci Biotechnol 7:20

    Google Scholar 

  • Richert BT, Goodband RD, Tokach MD, Nelssen JL (1997a) Increasing valine, isoleucine, and total branched-chain amino acids for lactating sows. J Anim Sci 75:2117–2128

    Google Scholar 

  • Richert BT, Tokach MD, Goodband RD, Nelssen JL, Campbell RG, Kershaw S (1997b) The effect of dietary lysine and valine fed during lactation on sow and litter performance. J Anim Sci 75:1853–1860

    Article  CAS  PubMed  Google Scholar 

  • Rose WC (1957) The amino acid requirements of adult man. Nutr Abstr Rev 27:631–647

    CAS  PubMed  Google Scholar 

  • Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA (2006) Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 8:1–27

    Article  PubMed  Google Scholar 

  • Sales F, Pacheco D, Blair H, Kenyon P, McCoard S (2013) Muscle free amino acid profiles are related to differences in skeletal muscle growth between single and twin ovine fetuses near term. SpringerPlus 2:483

    Google Scholar 

  • Santos de Aquino R, Dutra Junior WM, Manso HECC, Manso Filho HC, Kutschenko M, Nogueira E, Watford M (2014) Glutamine and glutamate (AminoGut) supplementation influ- ences sow colostrum and mature milk composition. Livest Sci 169:112–117

    Article  Google Scholar 

  • Schwarcz R, Rassoulpour A, Wu HQ, Medoff D, Tamminga CA, Roberts RC (2001) Increased cortical kynurenate content in schizophrenia. Biol Psychiatry 50:521–530

    Article  CAS  PubMed  Google Scholar 

  • Self JT, Spencer TE, Johnson GA, Hu J, Bazer FW, Wu G (2004) Glutamine synthesis in the developing porcine placenta. Biol Reprod 70:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Shen L (2012) Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Ann N Y Acad Sci 1258:9–18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P (2017) The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 15:630–638

    Article  CAS  PubMed  Google Scholar 

  • Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149

    Article  CAS  PubMed  Google Scholar 

  • Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84(Suppl):E60–E72

    Article  PubMed  Google Scholar 

  • Su Y, Lam TK, He W, Pocai A, Bryan J, Aguilar-Bryan L, Gutierrez-Juarez R (2012) Hypothalamic leucine metabolism regulates liver glucose production. Diabetes 61:85–93

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wu Z, Li W, Zhang C, Sun K, Ji Y, Wang B, Jiao N, He B, Wang W, Dai Z, Wu G (2015) Dietary L-leucine supplementation enhances intestinal development in suckling piglets. Amino Acids 47:1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Suryawan A, Hawes JW, Harris RA, Shimomura Y, Jenkins AE, Hutson SM (1998) A molecular model of human branched-chain amino acid metabolism. Am J Clin Nutr 68:72–81

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, Huang R, Tang W, Shinzato I, Smith SB, Wu G (2009) Dietary L-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175

    Article  CAS  PubMed  Google Scholar 

  • Tan B, Xiao H, Xiong X, Wang J, Li G, Yin Y, Huang B, Hou Y, Wu G (2015) L-arginine improves DNA synthesis in LPS-challenged enterocytes. Front Biosci (Landmark Ed) 20:989–1003

    Article  CAS  Google Scholar 

  • Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–2522

    Article  CAS  PubMed  Google Scholar 

  • Thureen PJ, Narkewicz MR, Battaglia FC, Tjoa S, Fennessey PV (1995) Pathways of serine and glycine metabolism in primary culture of ovine fetal hepatocytes. Pediatr Res 38:775–782

    Article  CAS  PubMed  Google Scholar 

  • Trottier NL, Shipley CF, Easter RA (1997) Plasma amino acid uptake by the mammary gland of the lactating sow. J Anim Sci 75:1266–1278

    Article  CAS  PubMed  Google Scholar 

  • van Straaten HW, He Y, van Duist MM, Labruyere WT, Vermeulen JL, van Dijk PJ, Ruijter JM, Lamers WH, Hakvoort TB (2006) Cellular concentrations of glutamine synthetase in murine organs. Biochem Cell Biol 84:215–231

    Article  PubMed  Google Scholar 

  • Volpi E, Kobayashi H, Sheffield-Moore M, Mittendorfer B, Wolfe RR (2003) Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults. Am J Clin Nutr 78:250–258

    Article  CAS  PubMed  Google Scholar 

  • Vonnahme KA, Wilson ME, Ford SP (2001) Relationship between placental vascular endothelial growth factor expression and placental/endometrial vascularity in the pig. Biol Reprod 64:1821–1825

    Article  CAS  PubMed  Google Scholar 

  • Walsh DA, Sallach HJ (1966) Comparative studies on the pathways for serine biosynthesis in animal tissues. J Biol Chem 241:4068–4076

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen L, Li P, Li X, Zhou H, Wang F, Li D, Yin Y, Wu G (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Keita AV, Phan V, McKay CM, Schoultz I, Lee J, Murphy MP, Fernando M, Ronaghan N, Balce D, Yates R, Dicay M, Beck PL, MacNaughton WK, Soderholm JD, McKay DM (2014a) Targeting mitochondria-derived reactive oxygen species to reduce epithelial barrier dysfunction and colitis. Am J Pathol 184:2516–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Dai Z, Wu Z, Lin G, Jia S, Hu S, Dahanayaka S, Wu G (2014b) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, Lin G, Hu S, Wang B, Dai Z, Wu G (2014c) Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. J Nutr 144:1540–1548

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ji Y, Wu G, Sun K, Sun Y, Li W, Wang B, He B, Zhang Q, Dai Z, Wu Z (2015a) L-Tryptophan activates mammalian target of rapamycin and enhances expression of tight junction proteins in intestinal porcine epithelial cells. J Nutr 145:1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhang C, Wu G, Sun Y, Wang B, He B, Dai Z, Wu Z (2015b) Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J Nutr 145:25–31

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li GR, Tan BE, Xiong X, Kong XF, Xiao DF, Xu LW, Wu MM, Huang B, Kim SW, Yin YL (2015c) Oral administration of putrescine and proline during the suckling period improves epithelial restitution after early weaning in piglets. J Anim Sci 93:1679–1688

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang Q, Qian J, Liang Q, Wang Z, Xu J, He S, Ma H (2015d) Bioavailability and bioavailable forms of collagen after oral administration to rats. J Agric Food Chem 63:3752–3756

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu Y, Shi H, Wang X, Zhu H, Pi D, Leng W, Li S (2017) Aspartate attenuates intestinal injury and inhibits TLR4 and NODs/NF-kappaB and p38 signaling in weaned pigs after LPS challenge. Eur J Nutr 56:1433–1443

    Article  CAS  PubMed  Google Scholar 

  • Wang CX, Chen F, Zhang WF, Zhang SH, Shi K, Song HQ, Wang YJ, Kim SW, Guan WT (2018) Leucine promotes the growth of fetal pigs by increasing protein synthesis through the mTOR signaling pathway in longissimus dorsi muscle at late gestation. J Agric Food Chem 66:3840–3849

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Sun SQ, Liu MY, Chen H, Liu N, Wu ZL, Wu G, Dai ZL (2020) Dietary L-tryptophan supplementation regulates colonic serotonin homeostasis and inhibits gut inflammation in mice with dextran sodium sulfate-induced colitis. J Nutr 150:1966-1976

    Google Scholar 

  • Watford M (2008) Glutamine metabolism and function in relation to proline synthesis and the safety of glutamine and proline supplementation. J Nutr 138:2003S–2007S

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson DL, Bertolo RF, Brunton JA, Shoveller AK, Pencharz PB, Ball RO (2004) Arginine synthesis is regulated by dietary arginine intake in the enterally fed neonatal piglet. Am J Physiol 287:E454–E462

    Google Scholar 

  • Wilkinson DJ, Hossain T, Hill DS, Phillips BE, Crossland H, Williams J, Loughna P, Churchward-Venne TA, Breen L, Phillips SM, Etheridge T, Rathmacher JA, Smith K, Szewczyk NJ, Atherton PJ (2013) Effects of leucine and its metabolite beta-hydroxy-beta-methylbutyrate on human skeletal muscle protein metabolism. J Physiol 591:2911–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Physiol Gastrointest Liver Physiol 272:G1382–G1390

    Article  CAS  Google Scholar 

  • Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252

    Article  CAS  PubMed  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17

    Article  PubMed  CAS  Google Scholar 

  • Wu G (2010) Functional amino acids in growth, reproduction, and health. Adv Nutr 1:31–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G (2020) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA (1994) Free and protein-bound amino acids in sow’s colostrum and milk. J Nutr 124:415–424

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol 269:R621–R629

    Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Borbolla AG, Knabe DA (1994) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Yan W, Flynn NE (1995) Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol 268:R334–R342

    Google Scholar 

  • Wu G, Bazer FW, Tuo W, Flynn SP (1996a) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Flynn NE, Yan W, Flynn SP (1996b) Arginine degradation in developing porcine enterocytes. Am J Physiol 271:G913–G919

    Google Scholar 

  • Wu G, Meier SA, Knabe DA (1996c) Dietary glutamine supplementation prevents jejunal atrophy in weaned pigs. J Nutr 126:2578–2584

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Haynes TE, Li H, Meininger CJ (2000) Glutamine metabolism in endothelial cells: ornithine synthesis from glutamine via pyrroline-5-carboxylate synthase. Comp Biochem Physiol A 126:115–123

    Article  CAS  Google Scholar 

  • Wu G, Haynes TE, Yan W, Meininger CJ (2001) Presence of glutamine:fructose-6-phosphate amidotransferase for glucosamine-6-phosphate synthesis in endothelial cells: effects of hyperglycaemia and glutamine. Diabetologia 44:196–202

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Hu J, Johnson GA, Spencer TE (2005) Polyamine synthesis from proline in the developing porcine placenta. Biol Reprod 72:842–850

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Wallace JM, Spencer TE (2006) Intrauterine growth retardation: implications for the animal sciences. J Anim Sci 84:2316–2337

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Jaeger LA, Johnson GA, Kim SW, Knabe DA, Meininger CJ, Spencer TE, Yin YL (2007) Important roles for the arginine family of amino acids in swine nutrition and production. Livest Sci 112:8–22

    Article  Google Scholar 

  • Wu G, Bazer FW, Datta S, Johnson GA, Li P, Satterfield MC, Spencer TE (2008) Proline metabolism in the conceptus: implications for fetal growth and development. Amino Acids 35:691–702

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Li XL, Satterfield MC, Spencer TE (2010) Impacts of amino acid nutrition on pregnancy outcome in pigs: mechanisms and implications for swine production. J Anim Sci 88(13 Suppl):E195–E204

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Burghardt RC, Johnson GA, Kim SW, Knabe DA, Li P, Li X, McKnight JR, Satterfield MC, Spencer TE (2011a) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino Acids 40:1053–1063

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Knabe DA, Burghardt RC, Spencer TE, Li XL, Wang JJ (2011b) Important roles for L-glutamine in swine nutrition and production. J Anim Sci 89:2017–2030

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Burghardt RC, Li X, Dai Z, Wang J, Wu Z (2013a) Maternal and fetal amino acid metabolism in gestating sows. Soc Reprod Fertil Suppl 68:185–198

    Google Scholar 

  • Wu G, Bazer FW, Satterfield MC, Li X, Wang X, Johnson GA, Burghardt RC, Dai Z, Wang J, Wu Z (2013b) Impacts of arginine nutrition on embryonic and fetal development in mammals. Amino Acids 45:241–256

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Wu Z, Dai Z, Yang Y, Wang W, Liu C, Wang B, Wang J, Yin Y (2013c) Dietary requirements of “nutritionally nonessential amino acids” by animals and humans. Amino Acids 44:1107–1113

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Dai Z, Li D, Wang J, Wu Z (2014) Amino acid nutrition in animals: protein synthesis and beyond. Annu Rev Anim Biosci 2:387–417

    Article  CAS  PubMed  Google Scholar 

  • Wu ZL, Hou YQ, Hu SD, Bazer FW, Meininger CJ, McNeal CJ, Wu G (2016) Catabolism and safety of supplemental L-arginine in animals. Amino Acids 48:1541–1552

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Herring C, Seo H, Dai Z, Wang J, Wu Z, Wang X (2017) Functional amino acids in the development of the pig placenta. Mol Reprod Dev 84:870–882

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Johnson GA, Hou Y (2018) Arginine nutrition and metabolism in growing, gestating, and lactating swine. J Anim Sci 96:5035–5051

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Hou Y, Dai Z, Hu CA, Wu G (2019) Metabolism, nutrition, and redox signaling of hydroxyproline. Antioxid Redox Signal 30:674–682

    Google Scholar 

  • Xi PB, Jiang ZY, Dai ZL, Li XL, Yao K, Zheng CT, Lin YC, Wang JJ, Wu G (2012) Regulation of protein turnover by L-glutamine in porcine intestinal epithelial cells. J Nutr Biochem 23:1012–1017

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Zeng L, Shao F, Huang B, Wu M, Tan B, Yin Y (2017) The role of nitric oxide pathway in arginine transport and growth of IPEC-1 cells. Oncotarget 8:29976–29983

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu S, Zhao Y, Shen J, Lin Y, Fang Z, Che L, Wu D (2015) Threonine and tryptophan supplementation enhance porcine respiratory and reproductive syndrome (PRRS) vaccine-induced immune responses of growing pigs. Anim Sci J 86:294–304

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li W, Sun Y, Han F, Hu CA, Wu Z (2015) Amino acid deprivation disrupts barrier function and induces protective autophagy in intestinal porcine epithelial cells. Amino Acids 47:2177–2184

    Article  CAS  PubMed  Google Scholar 

  • Yao K, Fang J, Yin YL, Feng ZM, Tang ZR, Wu G (2011) Tryptophan metabolism in animals: important roles in nutrition and health. Front Biosci (Schol Ed) 3:286–297

    Google Scholar 

  • Yi D, Hou Y, Wang L, Ouyang W, Long M, Zhao D, Ding B, Liu Y, Wu G (2015) L-Glutamine enhances enterocyte growth via activation of the mTOR signaling pathway independently of AMPK. Amino Acids 47:65–78

    Article  CAS  PubMed  Google Scholar 

  • Yi D, Li BC, Hou YQ, Wang L, Zhao D, Chen HB, Wu T, Zhou Y, Ding BY, Wu G (2018) Dietary supplementation with an amino acid blend enhances intestinal function in piglets. Amino Acids 50:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Ytrebo LM, Sen S, Rose C, Ten Have GA, Davies NA, Hodges S, Nedredal GI, Romero-Gomez M, Williams R, Revhaug A, Jalan R, Deutz NE (2006) Interorgan ammonia, glutamate, and glutamine trafficking in pigs with acute liver failure. Am J Physiol 291:G373–G381

    Google Scholar 

  • Zhang J, Yin YL, Shu XG, Li TJ, Li FN, Tan BE, Wu ZL, Wu G (2013) Oral administration of MSG increases expression of glutamate receptors and transporters in the gastrointestinal tract of young piglets. Amino Acids 45:1169–1177

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Lu T, Han L, Zhao L, Niu Y, Chen H (2017) L-Glutamine supplementation alleviates constipation during late gestation of mini sows by modifying the microbiota composition in feces. Biomed Res Int 2017:4862861

    Google Scholar 

  • Zhang J, He W, Yi D, Zhao D, Song Z, Hou Y, Wu G (2019) Regulation of protein synthesis in porcine mammary epithelial cells by L-valine. Amino Acids 51:717–726

    Article  CAS  PubMed  Google Scholar 

  • Zheng P, Song Y, Tian Y, Zhang H, Yu B, He J, Mao X, Yu J, Luo Y, Luo J, Huang Z, Tian G, Chen H, Chen D (2018) Dietary arginine supplementation affects intestinal function by enhancing antioxidant capacity of a nitric oxide-independent pathway in low-birth-weight piglets. J Nutr 148:1751–1759

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Lin G, Dai Z, Zhou T, Li T, Yuan T, Wu Z, Wu G, Wang J (2015) L-Glutamine deprivation induces autophagy and alters the mTOR and MAPK signaling pathways in porcine intestinal epithelial cells. Amino Acids 47:2185–2197

    Article  CAS  PubMed  Google Scholar 

  • Zhu YH, Li TT, Huang SM, Wang W, Dai ZL, Feng CP, Wu G, Wang JJ (2018) Maternal L-glutamine supplementation during late-gestation improves intrauterine growth restriction-induced intestinal dysfunction in piglets. Amino Acids 50:1289–1299

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by the National Key R&D Program of China (2016YFD0501210; Y. Hou), the Program of National Agricultural Research Outstanding Talents of China (2015; Y. Hou), Agriculture and Food Research Initiative Competitive Grants (2014-67015-21770 and 2015-67015-23276 to G. Wu and F.W. Bazer) from the USDA National Institute of Food and Agriculture, and Texas A&M AgriLife Research (H-8200; G. Wu). We thank students and research assistants in our laboratories for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Q., Hou, Y., Bazer, F.W., He, W., Posey, E.A., Wu, G. (2021). Amino Acids in Swine Nutrition and Production. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1285. Springer, Cham. https://doi.org/10.1007/978-3-030-54462-1_6

Download citation

Publish with us

Policies and ethics