Skip to main content

Optimizing Energy in Cooperative Sensing Cognitive Radios

  • Conference paper
  • First Online:
New Trends in Information and Communications Technology Applications (NTICT 2020)

Abstract

One of the viable solutions for effective spectrum management is cognitive radio. Single sensing systems are prone to interference; thus, the use of cooperative spectrum sensing. This paper aims to determine the required number of cognitive radios that would optimize the performance of a communication network in terms of energy utilization and bandwidth requirement. The cognitive sensing technique used was energy detection due to its reduced energy, computational, and communication resources requirement. The channel noise variance was set to −25 dB. Spectrum sensing was carried out at a frequency of 936 MHz and bandwidth of 200 kHz. Machine learning was first used to enhance the specificity of detection to minimize interference. Genetic Algorithm (GA) and Simulated Annealing (SA) were used to optimize the number of cognitive radios putting into consideration all constraints in the network. Genetic Algorithm gave a better result of two optimization techniques used. It gave an overall reduction of 40.74% in energy conserved without affecting the detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiwewe, T., Hancke, G.: A look at spectrum management policies for radio spectrum. EngineerIT, March 2015

    Google Scholar 

  2. Ericsson, “Mobility Report,” White Paper, pp. 7–8, May (2016)

    Google Scholar 

  3. Chaudari, S.: Spectrum Sensing for Cognitive Radios: Algorithms, Performance, and Limitations, Aalto University School of Electrical Engineering, Department of Signal Processing and Acoustics (2012)

    Google Scholar 

  4. Haykin, S., Thomson, D.J., Reed, J.H.: Spectrum sensing for cognitive radio. Proc. IEEE 97(5), 849–877 (2009)

    Article  Google Scholar 

  5. Reddy, G.S.A.K., Raju, U.G., Aravind, P., Sushma, D.: Intelligent wireless communication system of cognitive radio. 5, 78–82 (2013)

    Google Scholar 

  6. Mmary, C.: Cognitive Radio for Broadband Access in Rural Africa and other Developing Countries. MSc. Thesis, University of York, UK, December 2011

    Google Scholar 

  7. Sudeep, S., Nirajan, K.: Energy detection based techniques for spectrum sensing in cognitive radio over different fading channels. J. Selected Areas Telecommun. 4(2), 15–22 (2014)

    Google Scholar 

  8. Marcus, M., Burtle, J., Mcneil, N., Lahjouji, A., McNeil, N.: Report of the unlicensed devices and experimental licenses working group. In: FCC, Spectrum Policy Task Force, pp. 1–24 (2002)

    Google Scholar 

  9. Mittal, R., Garg, E.D.: A review on spectrum sensing techniques. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(5), 1187–1192 (2015)

    Google Scholar 

  10. Lakshmi, M., Saravanan, R., Muthaiah, R.: Energy detection based spectrum sensing for cognitive. Int. J. Eng. Technol. (IJET) 5(2), 963–967 (2013)

    Google Scholar 

  11. Verma, P.K., Taluja, S., Lal Dua, R.: Performance analysis of energy detection, matched filter detection & cyclostationary feature detection spectrum sensing techniques. Int. J. Comput. Eng. Res. 2(5), 2250–3005 (2012)

    Google Scholar 

  12. Ustok, R.F.: Spectrum sensing techniques for cognitive radio systems with multiple antennas. Izmir Institute of Technology (2010)

    Google Scholar 

  13. López-Benítez, M., Casadevall, F.: Improved energy detection spectrum sensing for cognitive radio. IET Commun. 6(8), 785–796 (2012)

    Article  MathSciNet  Google Scholar 

  14. Kanti, M., Barma, D., Singh, H., Roy, S., Sen, S.K.: Augmented spectrum sensing in cognitive radio networks. IJCSN Int. J. Comput. Sci. Netw. 4(6) (2015)

    Google Scholar 

  15. Zhu, J., Song, Y., Jiang, D., Song, H.: Multi-armed bandit channel access scheme with cognitive radio technology in wireless sensor networks for the Internet of Things. IEEE Access 4, 4609–4617 (2016)

    Article  Google Scholar 

  16. Jain, M., Kumar, V., Gangopadhyay, R., Debnath, S.: Cognitive radio oriented wireless networks. In: CROWNCOM 2015, LNICST, vol. 156, pp. 225–234 (2015)

    Google Scholar 

  17. Raj, V., Dias, I., Tholeti, T., Kalyani, S.: Spectrum access in cognitive radio using a two-stage reinforcement learning approach. IEEE J. Sel. Top. Sign. Proces. 12(1), 20–34 (2018)

    Article  Google Scholar 

  18. Kumar, A., Thakur, P., Pandit, S., Singh, G.: Analysis of optimal threshold selection for spectrum sensing in a cognitive radio network: an energy detection approach. Wireless Netw. 25(7), 3917–3931 (2019). https://doi.org/10.1007/s11276-018-01927-y

    Article  Google Scholar 

  19. Wang, H., Jiang, F., Zhou, M.: Cognitive radio power allocation algorithm based on improved particle swarm optimization. In: IEEE International Conference on Communication Systems (ICCS), pp. 354–359 (2018)

    Google Scholar 

  20. Elhachmi, J., Guennoun, Z.: Cognitive radio spectrum allocation using genetic algorithm. EURASIP J. Wireless Commun. Netw. 2016(1), 1–11 (2016). https://doi.org/10.1186/s13638-016-0620-6

    Article  Google Scholar 

  21. Kochar, S., Garg, R.: Spectrum sensing for cognitive radio using genetic algorithm. Int. J. Online Biomed. Eng. 14(9), 190–199 (2019)

    Google Scholar 

  22. E. Union, West African Common Market Project: Harmonization of Policies (2008)

    Google Scholar 

  23. Nirajan, K., Sudeep, S., Suman, S., Lamichhane, B.: Performance comparison of energy detection based spectrum sensing for cognitive radio networks. Int. Refer. J. Eng. Sci. (IRJES) ISSN, 49(8) 2319–183 (2015)

    Google Scholar 

  24. Axell, E., Leus, G., Larsson, E.G., Poor, H.V.: Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012)

    Article  Google Scholar 

  25. Hoven, N., Tandra, R., Sahai, A.: Some fundamental limits on cognitive radio. Wireless Foundations EECS, University of California at Berkeley (2005)

    Google Scholar 

  26. Axell, E., Larsson, E.G.: Optimal and sub-optimal spectrum sensing of OFDM signals in known and unknown noise variance optimal and sub-optimal spectrum sensing of OFDM signals in known and unknown noise variance. IEEE J. Sel. Areas Commun. 29(2), 290–304 (2011)

    Article  Google Scholar 

  27. Urkowitz, H.: Energy detection of unknown deterministic signals. Proc. IEEE 55(4), 523–531 (1967)

    Article  Google Scholar 

  28. Fajemilehin, T., Yahya, A., Langat, K., Opadiji, J.: Optimizing cognitive radio deployment in cooperative sensing for interference mitigation. In: BIUST Research and Innovation Symposium 2019 (RDAIS 2019), vol. 2019, no. June, pp. 76–81 (2019)

    Google Scholar 

  29. Fajemilehin, T.O., Olatunji, S.A., Opadiji, J.F.: Improved energy detection algorithm for cognitive radios in cooperative spectrum sensing. Int. J. Inf. Process. Commun. (IJIPC) 7(1), 148–163 (2019)

    Google Scholar 

  30. Opadiji, J.F., Olatunji, S.A., Fajemilehin, T.O.: On energy detection of cognitive radios in cooperative spectrum sensing. In: URSI-NG Conference Proceedings, pp. 29–36 (2015)

    Google Scholar 

  31. Mikaeil, A.M.: Machine learning approaches for spectrum management in cognitive radio networks. In: Farhadi, H. (ed.) Machine Learning - Advanced Techniques and Emerging Applications, pp. 117–140. IntechOpen, Rijeka (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temitope Fajemilehin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fajemilehin, T., Yahya, A., Aldhaibani, J.A., Langat, K. (2020). Optimizing Energy in Cooperative Sensing Cognitive Radios. In: Al-Bakry, A., et al. New Trends in Information and Communications Technology Applications. NTICT 2020. Communications in Computer and Information Science, vol 1183. Springer, Cham. https://doi.org/10.1007/978-3-030-55340-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-55340-1_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-55339-5

  • Online ISBN: 978-3-030-55340-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics