Skip to main content

IL-22 Signaling in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1290))

Abstract

Interleukin (IL)-22 belongs to the IL-10 cytokine family which performs biological functions by binding to heterodimer receptors comprising a type 1 receptor chain (R1) and a type 2 receptor chain (R2). IL-22 is mainly derived from CD4+ helper T cells, CD8+ cytotoxic T cells, innate lymphocytes, and natural killer T cells. It can activate downstream signaling pathways such as signal transducer and activator of transcription (STAT)1/3/5, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT)-mammalian target of rapamycin (mTOR) through these heterodimer receptors. Although IL-22 is produced by immune cells, its specific receptor IL-22R1 is selectively expressed in nonimmune cells, such as hepatocytes, colonic epithelial cells, and pancreatic epithelial cells (Jiang et al. Hepatology 54(3):900–9, 2011; Jiang et al. BMC Cancer 13:59, 2013; Curd et al. Clin Exp Immunol 168(2):192–9, 2012). Immune cells do not respond to IL-22 stimulation directly within tumors, reports from different groups have revealed that IL-22 can indirectly regulate the tumor microenvironment (TME). In the present chapter, we discuss the roles of IL-22 in malignant cells and immunocytes within the TME, meanwhile, the potential roles of IL-22 as a target for drug discovery will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ouyang W et al (2011) Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29:71–109

    Article  CAS  PubMed  Google Scholar 

  2. Sheppard P et al (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 4(1):63–68

    Article  CAS  PubMed  Google Scholar 

  3. Kotenko SV (2002) The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 13(3):223–240

    Article  CAS  PubMed  Google Scholar 

  4. Sabat R et al (2007) IL-19 and IL-20: two novel cytokines with importance in inflammatory diseases. Expert Opin Ther Targets 11(5):601–612

    Article  CAS  PubMed  Google Scholar 

  5. Wolk K, Sabat R (2006) Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev 17(5):367–380

    Article  CAS  PubMed  Google Scholar 

  6. Sanos SL et al (2009) RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10(1):83–91

    Article  CAS  PubMed  Google Scholar 

  7. Takatori H et al (2009) Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J Exp Med 206(1):35–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brand S et al (2007) IL-22-mediated liver cell regeneration is abrogated by SOCS-1/3 overexpression in vitro. Am J Physiol Gastrointest Liver Physiol 292(4):G1019–G1028

    Article  CAS  PubMed  Google Scholar 

  9. Sabat R, Ouyang W, Wolk K (2014) Therapeutic opportunities of the IL-22-IL-22R1 system. Nat Rev Drug Discov 13(1):21–38

    Article  CAS  PubMed  Google Scholar 

  10. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang R et al (2011) Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology 54(3):900–909

    Article  CAS  PubMed  Google Scholar 

  12. Jiang R et al (2013) IL-22 is related to development of human colon cancer by activation of STAT3. BMC Cancer 13:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Curd LM, Favors SE, Gregg RK (2012) Pro-tumour activity of interleukin-22 in HPAFII human pancreatic cancer cells. Clin Exp Immunol 168(2):192–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nardinocchi L et al (2015) Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol 45(3):922–931

    Article  CAS  PubMed  Google Scholar 

  15. Dudakov JA et al (2012) Interleukin-22 drives endogenous thymic regeneration in mice. Science 336(6077):91–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ouyang W, O’Garra A (2019) IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 50(4):871–891

    Article  CAS  PubMed  Google Scholar 

  17. Molina MF et al (2019) Type 3 cytokines in liver fibrosis and liver cancer. Cytokine 124:154497

    Article  CAS  PubMed  Google Scholar 

  18. Park O et al (2011) In vivo consequences of liver-specific interleukin-22 expression in mice: implications for human liver disease progression. Hepatology 54(1):252–261

    Article  PubMed  CAS  Google Scholar 

  19. Zhao D et al (2015) Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int J Cancer 136(11):2556–2565

    Article  CAS  PubMed  Google Scholar 

  20. Hwang S et al (2019) Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets. Hepatology 72(2):412–429

    Google Scholar 

  21. Rolla S et al (2016) The balance between IL-17 and IL-22 produced by liver-infiltrating T-helper cells critically controls NASH development in mice. Clin Sci (Lond) 130(3):193–203

    Article  CAS  Google Scholar 

  22. Fukui H et al (2011) DMBT1 is a novel gene induced by IL-22 in ulcerative colitis. Inflamm Bowel Dis 17(5):1177–1188

    Article  PubMed  Google Scholar 

  23. Kryczek I et al (2014) IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40(5):772–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu Y et al (2017) Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells. Oncotarget 8(15):25372–25383

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gronke K et al (2019) Interleukin-22 protects intestinal stem cells against genotoxic stress. Nature 566(7743):249–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang C et al (2017) Interleukin-22 drives nitric oxide-dependent DNA damage and dysplasia in a murine model of colitis-associated cancer. Mucosal Immunol 10(6):1504–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin Y et al (2017) Lactobacillus delivery of bioactive interleukin-22. Microb Cell Factories 16(1):148

    Article  CAS  Google Scholar 

  28. Xuan X et al (2018) Diverse effects of interleukin-22 on pancreatic diseases. Pancreatology 18(3):231–237

    Article  CAS  PubMed  Google Scholar 

  29. Xuan X et al (2020) ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clin Transl Oncol 22(4):563–575

    Article  CAS  PubMed  Google Scholar 

  30. Dixon BR et al (2016) IL-17a and IL-22 induce expression of antimicrobials in gastrointestinal epithelial cells and may contribute to epithelial cell defense against helicobacter pylori. PLoS One 11(2):e0148514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Zhuang Y et al (2012) Increased intratumoral IL-22-producing CD4(+) T cells and Th22 cells correlate with gastric cancer progression and predict poor patient survival. Cancer Immunol Immunother 61(11):1965–1975

    Article  CAS  PubMed  Google Scholar 

  32. Fukui H et al (2014) IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. Br J Cancer 111(4):763–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen X et al (2018) Accumulation of T-helper 22 cells, interleukin-22 and myeloid-derived suppressor cells promotes gastric cancer progression in elderly patients. Oncol Lett 16(1):253–261

    PubMed  PubMed Central  Google Scholar 

  34. Kobold S et al (2013) Interleukin-22 is frequently expressed in small- and large-cell lung cancer and promotes growth in chemotherapy-resistant cancer cells. J Thorac Oncol 8(8):1032–1042

    Article  CAS  PubMed  Google Scholar 

  35. Zhang W et al (2008) Antiapoptotic activity of autocrine interleukin-22 and therapeutic effects of interleukin-22-small interfering RNA on human lung cancer xenografts. Clin Cancer Res 14(20):6432–6439

    Article  CAS  PubMed  Google Scholar 

  36. Bi Y et al (2016) Interleukin-22 promotes lung cancer cell proliferation and migration via the IL-22R1/STAT3 and IL-22R1/AKT signaling pathways. Mol Cell Biochem 415(1-2):1–11

    Article  CAS  PubMed  Google Scholar 

  37. Naumnik W et al (2016) Clinical implications of hepatocyte growth factor, interleukin-20, and interleukin-22 in serum and bronchoalveolar fluid of patients with non-small cell lung cancer. Adv Exp Med Biol 952:41–49

    Article  CAS  PubMed  Google Scholar 

  38. Voigt C et al (2017) Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci U S A 114(49):12994–12999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Li H et al (2019) Interleukin-22 secreted by cancer-associated fibroblasts regulates the proliferation and metastasis of lung cancer cells via the PI3K-Akt-mTOR signaling pathway. Am J Transl Res 11(7):4077–4088

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Katara GK et al (2020) Interleukin-22 promotes development of malignant lesions in a mouse model of spontaneous breast cancer. Mol Oncol 14(1):211–224

    Article  CAS  PubMed  Google Scholar 

  41. Wang S et al (2018) Interleukin-22 promotes triple negative breast cancer cells migration and paclitaxel resistance through JAK-STAT3/MAPKs/AKT signaling pathways. Biochem Biophys Res Commun 503(3):1605–1609

    Article  CAS  PubMed  Google Scholar 

  42. Rui J et al (2017) IL-22 promotes the progression of breast cancer through regulating HOXB-AS5. Oncotarget 8(61):103601–103612

    Article  PubMed  PubMed Central  Google Scholar 

  43. Weber GF et al (2006) IL-22-mediated tumor growth reduction correlates with inhibition of ERK1/2 and AKT phosphorylation and induction of cell cycle arrest in the G2-M phase. J Immunol 177(11):8266–8272

    Article  CAS  PubMed  Google Scholar 

  44. Kim K et al (2014) Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP 3K8 activation. Carcinogenesis 35(6):1352–1361

    Article  CAS  PubMed  Google Scholar 

  45. Bard JD et al (2008) Aberrant expression of IL-22 receptor 1 and autocrine IL-22 stimulation contribute to tumorigenicity in ALK+ anaplastic large cell lymphoma. Leukemia 22(8):1595–1603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Prutsch N et al (2019) Dependency on the TYK2/STAT1/MCL1 axis in anaplastic large cell lymphoma. Leukemia 33(3):696–709

    Article  CAS  PubMed  Google Scholar 

  47. Kouzegaran S et al (2018) Elevated IL-17A and IL-22 regulate expression of inducible CD38 and Zap-70 in chronic lymphocytic leukemia. Cytometry B Clin Cytom 94(1):143–147

    Article  CAS  PubMed  Google Scholar 

  48. Chen P et al (2015) The alteration and clinical significance of Th22/Th17/Th1 cells in patients with chronic myeloid leukemia. J Immunol Res 2015:416123

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tian T et al (2013) Increased Th22 cells as well as Th17 cells in patients with adult T-cell acute lymphoblastic leukemia. Clin Chim Acta 426:108–113

    Article  CAS  PubMed  Google Scholar 

  50. Yu S et al (2014) Elevated Th22 cells correlated with Th17 cells in peripheral blood of patients with acute myeloid leukemia. Int J Mol Sci 15(2):1927–1945

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tian T et al (2015) The profile of T helper subsets in bone marrow microenvironment is distinct for different stages of acute myeloid leukemia patients and chemotherapy partly ameliorates these variations. PLoS One 10(7):e0131761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Jin M, Yoon J (2018) From bench to clinic: the potential of therapeutic targeting of the IL-22 signaling pathway in atopic dermatitis. Immune Netw 18(6):e42

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kragstrup TW et al (2018) The IL-20 cytokine family in rheumatoid arthritis and spondyloarthritis. Front Immunol 9:2226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Huber S et al (2012) IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491(7423):259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fagard R et al (2013) STAT3 inhibitors for cancer therapy: have all roads been explored? JAKSTAT 2(1):e22882

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beicheng Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jiang, R., Sun, B. (2021). IL-22 Signaling in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1290. Springer, Cham. https://doi.org/10.1007/978-3-030-55617-4_5

Download citation

Publish with us

Policies and ethics