Skip to main content

Critical Exponents for the Valence-Bond-Solid Transition in Lattice Quantum Electrodynamics

  • Conference paper
  • First Online:

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

Recent sign-problem-free quantum Monte Carlo simulations of (2+1)-dimensional lattice quantum electrodynamics (QED3) with N f flavors of fermions on the square lattice have found evidence of continuous quantum phase transitions between a critical phase and a gapped valence-bond-solid (VBS) phase for flavor numbers N f = 4, 6, and 8. We derive the critical theory for these transitions, the chiral O(2) QED3-Gross–Neveu model, and show that the latter is equivalent to the gauged Nambu–Jona-Lasinio model. Using known large-N f results for the latter, we estimate the order parameter anomalous dimension and the correlation length exponent for the transitions mentioned above. We obtain large-N f results for the dimensions of fermion bilinear operators, in both the gauged and ungauged chiral O(2) Gross–Neveu models, which, respectively, describe the long-distance power-law decay of two-particle correlation functions at the VBS transition in lattice QED3 and the Kekulé-VBS transition for correlated fermions on the honeycomb lattice.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. T. Senthil, et al., Science 303, 1490 (2004)

    Article  Google Scholar 

  2. T. Senthil, et al., Phys. Rev. B 70, 144407 (2004)

    Article  ADS  Google Scholar 

  3. X.-G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, New York, 2004)

    Google Scholar 

  4. E. Zohar, J.I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)

    Article  ADS  Google Scholar 

  5. E.A. Martinez, et al., Nature 534, 516 (2016)

    Article  ADS  Google Scholar 

  6. X.Y. Xu, et al., Phys. Rev. X 9, 021022 (2019)

    Google Scholar 

  7. W. Wang, et al., Phys. Rev. B 100, 085123 (2019)

    Article  ADS  Google Scholar 

  8. M. Hermele, T. Senthil, M.P.A. Fisher, Phys. Rev. B 72, 104404 (2005)

    Article  ADS  Google Scholar 

  9. É. Dupuis, M.B. Paranjape, W. Witczak-Krempa, Phys. Rev. B 100, 094443 (2019)

    Article  ADS  Google Scholar 

  10. N. Zerf, et al., Phys. Rev. B 100, 235130 (2019)

    Article  ADS  Google Scholar 

  11. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961)

    Article  ADS  Google Scholar 

  12. S.P. Klevansky, R.H. Lemmer, Phys. Rev. D 39, 3478 (1989)

    Article  ADS  Google Scholar 

  13. T.C. Lang, et al., Phys. Rev. Lett. 111, 066401 (2013)

    Article  ADS  Google Scholar 

  14. Z. Zhou, et al., Phys. Rev. B 93, 245157 (2016)

    Article  ADS  Google Scholar 

  15. Z.-X. Li, et al., Nat. Commun. 8, 314 (2017)

    Article  ADS  Google Scholar 

  16. N. Zerf, et al., Phys. Rev. D 101, 094505 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. T. Appelquist, D. Nash, L.C.R. Wijewardhana, Phys. Rev. Lett. 60, 2575 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  18. J.A. Gracey, J. Phys. A 25, L109 (1992)

    Article  ADS  Google Scholar 

  19. J.A. Gracey, J. Phys. A 26, 1431 (1993); 51, 479501 (2018)

    Google Scholar 

  20. J.A. Gracey, Ann. Phys. 224, 275 (1993)

    Article  ADS  Google Scholar 

  21. T. Alanne, S. Blasi, Phys. Rev. D 98, 116004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.A. Gracey, Phys. Rev. D 98, 085012 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Boyack, A. Rayyan, J. Maciejko, Phys. Rev. B 99, 195135 (2019)

    Article  ADS  Google Scholar 

  24. J.A. Gracey, Mod. Phys. Lett. A 8, 2205 (1993)

    Article  ADS  Google Scholar 

  25. J.A. Gracey, Phys. Lett. B 308, 65 (1993)

    Article  ADS  Google Scholar 

  26. J.A. Gracey, Phys. Rev. D 50, 2840 (1994)

    Article  ADS  Google Scholar 

  27. J.A. Gracey, Phys. Rev. D 59, 109904 (1999)

    Article  ADS  Google Scholar 

  28. S.S. Pufu, Phys. Rev. D 89, 065016 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the CRM and the QTS-XI committee for organizing this excellent conference. We thank J. A. Gracey, P. Marquard, and N. Zerf for collaboration on related topics, É. Dupuis, S. Giombi, I. F. Herbut, I. R. Klebanov, Z. Y. Meng, A. Penin, M. M. Scherer, and W. Witczak-Krempa for useful discussions, and NSERC, CIFAR, the University of Alberta’s Theoretical Physics Institute (TPI), and the CRC program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Maciejko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boyack, R., Maciejko, J. (2021). Critical Exponents for the Valence-Bond-Solid Transition in Lattice Quantum Electrodynamics. In: Paranjape, M.B., MacKenzie, R., Thomova, Z., Winternitz, P., Witczak-Krempa, W. (eds) Quantum Theory and Symmetries. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-55777-5_32

Download citation

Publish with us

Policies and ethics