Skip to main content

Applying AI in Practice: Key Challenges and Lessons Learned

  • Conference paper
  • First Online:
Machine Learning and Knowledge Extraction (CD-MAKE 2020)

Abstract

The main challenges along with lessons learned from ongoing research in the application of machine learning systems in practice are discussed, taking into account aspects of theoretical foundations, systems engineering, and human-centered AI postulates. The analysis outlines a fundamental theory-practice gap which superimposes the challenges of AI system engineering at the level of data quality assurance, model building, software engineering and deployment.

Special thanks go to A Min Tjoa, former Scientific Director of SCCH, for his encouraging support in bringing together data and software science to tackle the research problems discussed in this paper. The research reported in this paper has been funded by BMK, BMDW, and the Province of Upper Austria in the frame of the COMET Programme managed by FFG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.pwc.com/gx/en/services/people-organisation/workforce-of-the-future/workforce-of-the-future-the-competing-forces-shaping-2030-pwc.pdf.

  2. 2.

    https://www.whitehouse.gov/wp-content/uploads/2019/06/National-AI-Research-and-Development-Strategic-Plan-2019-Update-June-2019.pdf.

  3. 3.

    https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.

  4. 4.

    https://algorithmwatch.org/en/project/ai-ethics-guidelines-global-inventory/.

  5. 5.

    https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.

  6. 6.

    https://www.iso.org/committee/6794475/x/catalogue/p/0/u/1/w/0/d/0.

  7. 7.

    https://griffin.incubator.apache.org.

  8. 8.

    https://github.com/mobydq/mobydq.

  9. 9.

    Platform supporting an integrated analysis of image and multiOMICs data based on liquid biopsies for tumor diagnostics – https://www.visiomics.at/.

  10. 10.

    Nuclear Segmentation Pipeline code available: https://github.com/SCCH-KVS/NuclearSegmentationPipeline.

  11. 11.

    BioStudies: https://www.ebi.ac.uk/biostudies/studies/S-BSST265.

  12. 12.

    DeepSNP code available: https://github.com/SCCH-KVS/deepsnp.

  13. 13.

    https://www.aloha-h2020.eu/.

  14. 14.

    https://onnx.ai/.

References

  1. Amershi, S., et al.: Guidelines for human-AI interaction. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI 2019 (2019)

    Google Scholar 

  2. Anand, S., et al.: An orchestrated survey of methodologies for automated software test case generation. J. Syst. Softw. 86(8), 1978–2001 (2013)

    Google Scholar 

  3. Athalye, A., Engstrom, L., Ilyas, A., Kwok, K.: Synthesizing robust adversarial examples. arXiv e-prints (2017)

    Google Scholar 

  4. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 1–39 (2018)

    Google Scholar 

  5. Bensalem, M., Dizdarević, J., Jukan, A.: Modeling of deep neural network (DNN) placement and inference in edge computing. arXiv e-prints (2020)

    Google Scholar 

  6. Breck, E., Zinkevich, M., Polyzotis, N., Whang, S., Roy, S.: Data validation for machine learning. In: Proceedings of SysML (2019)

    Google Scholar 

  7. Cagala, T.: Improving data quality and closing data gaps with machine learning. In: Settlements, B.F.I. (ed.) Data Needs and Statistics Compilation for Macroprudential Analysis, vol. 46 (2017)

    Google Scholar 

  8. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques and applications (2017)

    Google Scholar 

  9. Carvalho, D.V., Pereira, E.M., Cardoso, J.S.: Machine learning interpretability: a survey on methods and metrics. Electronics 8(8), 832 (2019)

    Article  Google Scholar 

  10. Char, D.S., Shah, N.H., Magnus, D.: Implementing machine learning in health care - addressing ethical challenges. N. Engl. J. Med. 378(11), 981–983 (2018). https://doi.org/10.1056/NEJMp1714229. pMID: 29539284

    Article  Google Scholar 

  11. Chrisman, N.: The role of quality information in the long-term functioning of a geographic information system. Cartographica Int. J. Geogr. Inf. Geovisualization 21(2), 79–88 (1983)

    Google Scholar 

  12. Cohen, R., Schaekermann, M., Liu, S., Cormier, M.: Trusted AI and the contribution of trust modeling in multiagent systems. In: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2019, pp. 1644–1648 (2019)

    Google Scholar 

  13. Deeks, A.: The judicial demand for explainable artificial intelligence. Columbia Law Rev. 119(7), 1829–1850 (2019)

    Google Scholar 

  14. Dorninger, B., Moser, M., Pichler, J.: Multi-language re-documentation to support a COBOL to Java migration project. In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 536–540. IEEE (2017)

    Google Scholar 

  15. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv (2017)

    Google Scholar 

  16. Eghbal-Zadeh, H., et al.: DeepSNP: an end-to-end deep neural network with attention-based localization for breakpoint detection in single-nucleotide polymorphism array genomic data. J. Comput. Biol. 26(6), 572–596 (2018)

    Google Scholar 

  17. Eghbal-zadeh, H., Zellinger, W., Widmer, G.: Mixture density generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5820–5829 (2019)

    Google Scholar 

  18. Ehrlinger, L., Grubinger, T., Varga, B., Pichler, M., Natschläger, T., Zeindl, J.: Treating missing data in industrial data analytics. In: 2018 Thirteenth International Conference on Digital Information Management (ICDIM), pp. 148–155. IEEE, September 2018

    Google Scholar 

  19. Ehrlinger, L., Haunschmid, V., Palazzini, D., Lettner, C.: A DaQL to monitor data quality in machine learning applications. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DEXA 2019. LNCS, vol. 11706, pp. 227–237. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27615-7_17

    Chapter  Google Scholar 

  20. Ehrlinger, L., Rusz, E., Wöß, W.: A Survey of data quality measurement and monitoring tools. CoRR abs/1907.08138 (2019)

    Google Scholar 

  21. Ehrlinger, L., Werth, B., Wöß, W.: Automated continuous data quality measurement with quaiie. Int. J. Adv. Softw. 11(3&4), 400–417 (2018)

    Google Scholar 

  22. Ehrlinger, L., Wöß, W.: Automated data quality monitoring. In: 22nd MIT International Conference on Information Quality (ICIQ 2017), pp. 15.1–15.9 (2017)

    Google Scholar 

  23. Felderer, M., Ramler, R.: Integrating risk-based testing in industrial test processes. Software Qual. J. 22(3), 543–575 (2014)

    Google Scholar 

  24. Fischer, S., Ramler, R., Linsbauer, L., Egyed, A.: Automating test reuse for highly configurable software. In: Proceedings of the 23rd International Systems and Software Product Line Conference-Volume A, pp. 1–11 (2019)

    Google Scholar 

  25. Forcier, M.B., Gallois, H., Mullan, S., Joly, Y.: Integrating artificial intelligence into health care through data access: can the GDPR act as a beacon for policymakers? J. Law Biosci. 6(1), 317–335 (2019)

    Google Scholar 

  26. Gal, Y.: Uncertainty in deep learning. Thesis (2016)

    Google Scholar 

  27. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning, ICML 2016, vol. 48. pp. 1050–1059. JMLR.org (2016)

    Google Scholar 

  28. Galloway, A., Taylor, G.W., Moussa, M.: Predicting adversarial examples with high confidence. arXiv e-prints (2018)

    Google Scholar 

  29. Geist, V., Moser, M., Pichler, J., Beyer, S., Pinzger, M.: Leveraging machine learning for software redocumentation. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 622–626. IEEE (2020)

    Google Scholar 

  30. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pp. 80–89 (2018)

    Google Scholar 

  31. Gorban, A.N., Tyukin, I.Y.: Blessing of dimensionality: mathematical foundations of the statistical physics of data. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2118), 20170237 (2018)

    MathSciNet  Google Scholar 

  32. Grancharova, A., Johansen, T.A.: Nonlinear model predictive control, In: Explicit Nonlinear Model Predictive Control, vol. 429, pp. 39–69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28780-0_2

  33. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1–42 (2018)

    Google Scholar 

  34. Gunning, D.: Darpa’s explainable artificial intelligence (XAI) program. In: Proceedings of the 24th International Conference on Intelligent User Interfaces. p. ii. IUI 2019. Association for Computing Machinery, New York (2019)

    Google Scholar 

  35. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. arXiv e-prints (2017)

    Google Scholar 

  36. Gusenleitner, N., et al.: Facing mental workload in AI-transformed working environments. In: h-WORKLOAD 2019: 3rd International Symposium on Human Mental Workload: Models and Applications (2019)

    Google Scholar 

  37. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  38. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV) (2017). arXiv: 1703.06870

  39. Hein, M., Andriushchenko, M., Bitterwolf, J.: Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 41–50 (2019)

    Google Scholar 

  40. Heinrich, B., Hristova, D., Klier, M., Schiller, A., Szubartowicz, M.: Requirements for data quality metrics. J. Data Inform. Qual. 9(2), 1–32 (2018)

    Google Scholar 

  41. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects. CoRR abs/1812.04608 (2018)

    Google Scholar 

  42. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016). https://doi.org/10.1007/s40708-016-0042-6

    Article  Google Scholar 

  43. Holzinger, A., Carrington, A., Müller, H.: Measuring the quality of explanations: the system causability scale (SCS). Special Issue on Interactive Machine Learning. Künstliche Intelligenz (Ger. J. Artif. Intell. 34, 193–198 (2020)

    Google Scholar 

  44. Holzinger, A., Kieseberg, P., Weippl, E., Tjoa, A.M.: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 1–8. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_1

    Chapter  Google Scholar 

  45. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainability of artificial intelligence in medicine. WIREs Data Min. Knowl. Discov. 9(4), e1312 (2019)

    Google Scholar 

  46. Holzinger, A.: Introduction to machine learning and knowledge extraction (make). Mach. Learn. Knowl. Extr 1(1), 1–20 (2017)

    Google Scholar 

  47. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. CoRR abs/1712.05877 (2017)

    Google Scholar 

  48. Jiang, J., Zhai, C.: Instance weighting for domain adaptation in NLP. In: Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pp. 264–271 (2007)

    Google Scholar 

  49. Johnson, M., Vera, A.: No AI is an island: the case for teaming intelligence. AI Mag. 40(1), 16–28 (2019)

    Google Scholar 

  50. Jung, C., Kim, C.: Impact of the accuracy of automatic segmentation of cell nuclei clusters on classification of thyroid follicular lesions. Cytometry. Part A J. Int. Soc. Anal. Cytol 85(8), 709–718 (2014)

    Google Scholar 

  51. Kelly, C.J., Karthikesalingam, A., Suleyman, M., Corrado, G., King, D.: Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17(1), 195 (2019)

    Google Scholar 

  52. Kromp, F., et al.: An annotated fluorescence image dataset for training nuclear segmentation methods. Nat. Sci. Data (2020, in press)

    Google Scholar 

  53. Kromp, F., et al.: Deep learning architectures for generalized immunofluorescence based nuclear image segmentation. arXiv e-prints (2019)

    Google Scholar 

  54. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(FEB), 436–444 (2015)

    Google Scholar 

  55. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Li, S., Wang, Y.: Research on interdisciplinary characteristics: a case study in the field of artificial intelligence. IOP Conf. Ser. Mater. Sci. Eng. 677, 052023 (2019)

    Google Scholar 

  57. Lipton, Z.C.: The mythos of model interpretability. Queue 16(3), 31–57 (2018)

    Google Scholar 

  58. Little, M.A., et al.: Using and understanding cross-validation strategies. Perspectives on saeb et al. GigaScience 6(5), gix020 (2017)

    Google Scholar 

  59. Lombrozo, T.: Explanatory preferences shape learning and inference. Trends Cogn. Sci. 20(10), 748–759 (2016)

    Google Scholar 

  60. London, A.: Artificial intelligence and black-box medical decisions: accuracy versus explainability. Hastings Cent. Rep. 49, 15–21 (2019)

    Google Scholar 

  61. Ma, L., Artho, C., Zhang, C., Sato, H., Gmeiner, J., Ramler, R.: GRT: program-analysis-guided random testing (t). In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 212–223. IEEE (2015)

    Google Scholar 

  62. Masin, M., et al.: Pluggable analysis viewpoints for design space exploration. Procedia Comput. Sci. 16, 226–235 (2013)

    Google Scholar 

  63. Maydanchik, A.: Data Quality Assessment. Technics Publications, LLC, Bradley Beach (2007)

    Google Scholar 

  64. Meloni, P., et al.: NEURAghe: exploiting CPU-FPGA synergies for efficient and flexible CNN inference acceleration on Zynq SoCs. CoRR abs/1712.00994 (2017)

    Google Scholar 

  65. Meloni, P., et al.: ALOHA: an architectural-aware framework for deep learning at the edge. In: Proceedings of the Workshop on INTelligent Embedded Systems Architectures and Applications - INTESA, pp. 19–26. ACM Press (2018)

    Google Scholar 

  66. Meloni, P., et al.: Architecture-aware design and implementation of CNN algorithms for embedded inference: the ALOHA project. In: 2018 30th International Conference on Microelectronics (ICM), pp. 52–55 (2018)

    Google Scholar 

  67. Meloni, P., et al.: Optimization and deployment of CNNS at the edge: the ALOHA experience. In: Proceedings of the 16th ACM International Conference on Computing Frontiers, CF 2019, pp. 326–332 (2019)

    Google Scholar 

  68. Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.: Defect prediction from static code features: current results, limitations, new approaches. Autom. Softw. Eng. 17(4), 375–407 (2010)

    Google Scholar 

  69. Moser, M., Pichler, J., Fleck, G., Witlatschil, M.: RbGG: a documentation generator for scientific and engineering software. In: 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and Reengineering (SANER), pp. 464–468. IEEE (2015)

    Google Scholar 

  70. Méhes, G., et al.: Detection of disseminated tumor cells in neuroblastoma: 3 log improvement in sensitivity by automatic immunofluorescence plus FISH (AIPF) analysis compared with classical bone marrow cytology. Am. J. Pathol. 163(2), 393–399 (2003)

    Google Scholar 

  71. Newman, S.: Building Microservices, 1st edn. O’Reilly Media Inc. (2015)

    Google Scholar 

  72. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

    Google Scholar 

  73. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-03811-6

    Book  MATH  Google Scholar 

  74. Nikzad-Langerodi, R., Zellinger, W., Lughofer, E., Saminger-Platz, S.: Domain-invariant partial-least-squares regression. Anal. Chem. 90(11), 6693–6701 (2018)

    Google Scholar 

  75. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

    Google Scholar 

  76. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science 366(6464), 447–453 (2019)

    Google Scholar 

  77. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Google Scholar 

  78. Pascarella, L., Bacchelli, A.: Classifying code comments in java open-source software systems. In: 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR), pp. 227–237. IEEE (2017)

    Google Scholar 

  79. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)

    Google Scholar 

  80. Pimentel, A.D., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system architectures at multiple abstraction levels. IEEE Trans. Comput. 55(2), 99–112 (2006)

    Google Scholar 

  81. Quionero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D.: Dataset Shift in Machine Learning. The MIT Press, Cambridge (2009)

    Google Scholar 

  82. Ramler, R., Buchgeher, G., Klammer, C.: Adapting automated test generation to gui testing of industry applications. Inf. Softw. Technol. 93, 248–263 (2018)

    Google Scholar 

  83. Ramler, R., Felderer, M.: A process for risk-based test strategy development and its industrial evaluation. In: Abrahamsson, P., Corral, L., Oivo, M., Russo, B. (eds.) PROFES 2015. LNCS, vol. 9459, pp. 355–371. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26844-6_26

    Chapter  Google Scholar 

  84. Ramler, R., Wolfmaier, K.: Issues and effort in integrating data from heterogeneous software repositories and corporate databases. In: Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and Measurement, pp. 330–332 (2008)

    Google Scholar 

  85. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  86. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. arXiv e-prints (2017)

    Google Scholar 

  87. Sculley, D., et al.: Hidden technical debt in machine learning systems. In: 28th International Conference on Neural Information Processing Systems (NIPS), pp. 2503–2511 (2015)

    Google Scholar 

  88. Sebastian-Coleman, L.: Measuring Data Quality for Ongoing Improvement. Elsevier, Amsterdam (2013)

    Google Scholar 

  89. Shinyama, Y., Arahori, Y., Gondow, K.: Analyzing code comments to boost program comprehension. In: 2018 25th Asia-Pacific Software Engineering Conference (APSEC), pp. 325–334. IEEE (2018)

    Google Scholar 

  90. Dosilovic, F.K., Brçiç, M., Hlupic, N.: Explainable artificial intelligence: a survey. In: Skala, K. (ed.) Croatian Society for Information and Communication Technology, Electronics and Microelectronics - MIPRO (2018)

    Google Scholar 

  91. Sobieczky, F.: An interlacing technique for spectra of random walks and its application to finite percolation clusters. J. Theor. Probab. 23, 639–670 (2010)

    MathSciNet  MATH  Google Scholar 

  92. Sobieczky, F.: Bounds for the annealed return probability on large finite percolation graphs. Electron. J. Probab. 17, 17 (2012)

    MathSciNet  MATH  Google Scholar 

  93. Sobieczky, F.: Explainability of models with an interpretable base model: explainability vs. accuracy. In: Symposium on Predictive Analytics 2019, Vienna (2019)

    Google Scholar 

  94. Steidl, D., Hummel, B., Juergens, E.: Quality analysis of source code comments. In: 2013 21st International Conference on Program Comprehension (ICPC), pp. 83–92. IEEE (2013)

    Google Scholar 

  95. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  96. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv e-prints (2013)

    Google Scholar 

  97. Sünderhauf, N., et al.: The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37(4–5), 405–420 (2018)

    Google Scholar 

  98. Van Geet, J., Ebraert, P., Demeyer, S.: Redocumentation of a legacy banking system: an experience report. In: Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL) and International Workshop on Principles of Software Evolution (IWPSE), pp. 33–41 (2010)

    Google Scholar 

  99. Vapnik, V.N.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    MATH  Google Scholar 

  100. Vidal, R., Bruna, J., Giryes, R., Soatto, S.: Mathematics of deep learning. arXiv e-prints (2017). arxiv:1712.04741

  101. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Google Scholar 

  102. Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inform. Syst. 12(4), 5–33 (1996)

    Google Scholar 

  103. Wang, Y.E., Wei, G.Y., Brooks, D.: Benchmarking TPU, GPU, and CPU platforms for deep learning. arXiv e-prints (2019)

    Google Scholar 

  104. Xu, G., Huang, J.Z.: Asymptotic optimality and efficient computation of the leave-subject-out cross-validation. Ann. Stat. 40(6), 3003–3030 (2012)

    MathSciNet  MATH  Google Scholar 

  105. Yu, T., Zhu, H.: Hyper-parameter optimization: a review of algorithms and applications. arXiv e-prints (2020)

    Google Scholar 

  106. Zellinger, W., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.: Central moment discrepancy (CMD) for domain-invariant representation learning. In: International Conference on Learning Representations (2017)

    Google Scholar 

  107. Zellinger, W., et al.: Multi-source transfer learning of time series in cyclical manufacturing. J. Intell. Manuf. 31(3), 777–787 (2020)

    Google Scholar 

  108. Zellinger, W., Moser, B.A., Grubinger, T., Lughofer, E., Natschläger, T., Saminger-Platz, S.: Robust unsupervised domain adaptation for neural networks via moment alignment. Inf. Sci. 483, 174–191 (2019)

    MathSciNet  Google Scholar 

  109. Zellinger, W., Moser, B.A., Saminger-Platz, S.: Learning bounds for moment-based domain adaptation. arXiv preprint arXiv:2002.08260 (2020)

  110. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations (201z)

    Google Scholar 

  111. Zou, J., Schiebinger, L.: AI can be sexist and racist - it’s time to make it fair. Nature 559, 324–326 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fischer, L. et al. (2020). Applying AI in Practice: Key Challenges and Lessons Learned. In: Holzinger, A., Kieseberg, P., Tjoa, A., Weippl, E. (eds) Machine Learning and Knowledge Extraction. CD-MAKE 2020. Lecture Notes in Computer Science(), vol 12279. Springer, Cham. https://doi.org/10.1007/978-3-030-57321-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57321-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57320-1

  • Online ISBN: 978-3-030-57321-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics