Skip to main content

Halophytes in India and Their Role in Phytoremediation

  • Reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Halophytic plants thrive well in the environments characterized by excess salt ions, even at toxic concentration, particularly sodium and chloride, due to their efficient biochemical tolerance mechanisms. These adaptation mechanisms may not be limited to high salt concentrations but may confer tolerance to other toxic ions, including heavy metals. Several studies have documented the ability of halophytes to tolerate and accumulate high levels of heavy metals, making them excellent candidates for phytoremediation of contaminated soils. This chapter details the overview of halophytes in India and their phytoremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals- Concepts and applications. Chemosphere, 91, 869–881.

    Article  CAS  PubMed  Google Scholar 

  • Almeida, C. M. R., Mucha, A. P., & Vasconcelos, M. T. S. D. (2006). Comparison of the role of the sea club rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environmental Pollution, 142, 151–159.

    Article  CAS  PubMed  Google Scholar 

  • Alyazouri, A., Jewsbury, R. A., Tayim, H. A., Humphreys, P. N., & Al-Sayah, M. H. (2013). Phytoextraction of Cr (VI) from soil using Portulaca oleracea. Toxicological and Environmental Chemistry, 95, 1338–1347.

    Article  CAS  Google Scholar 

  • Amari, T., Ghnaya, T., Debez, A., Taamali, M., Ben Youssef, N., Lucchini, G., Sacchi, G. A., & Abdelly, C. (2014). Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: Metal accumulation, nutrient status and photosynthetic activity. Journal of Plant Physiology, 171, 1634–1644.

    Article  CAS  PubMed  Google Scholar 

  • Anjum, N. A., Ahmad, I., Válega, M., Mohmood, I., Gill, S. S., Tuteja, N., Duarte, A. C., & Pereira, E. (2014). Salt marsh halophyte services to metal-metalloid remediation: Assessment of the processes and underlying mechanisms. Critical Reviews in Environmental Science and Technology, 44, 2038–2106.

    Article  CAS  Google Scholar 

  • Ayyappan, D., Sathiyaraj, G., & Ravindran, K. C. (2016). Phytoextraction of heavy metals by Sesuvium portulacastrum L. a salt marsh halophyte from tannery effluent. International Journal of Phytoremediation, 18, 453–459.

    Article  CAS  PubMed  Google Scholar 

  • Bankaji, I., Caçador, I., & Sleimi, N. (2015). Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: Growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Environmental Science and Pollution Research, 22, 13058–13069.

    Article  CAS  PubMed  Google Scholar 

  • Barik, J., & Chowdhury, S. (2014). True mangrove species of Sundarbans delta, West Bengal, Eastern India. Check List, 10, 329–334.

    Article  Google Scholar 

  • Benavídes, M. P., Marconi, P. L., Gallego, S. M., Comba, M. E., & Tomaro, M. L. (2000). Relationship between antioxidant defence systems and salt tolerance in Solanum tuberosum. Australian Journal of Plant Physiology, 27, 273–278.

    Google Scholar 

  • BenRejeb, K., Ghnaya, T., Zaier, H., Benzarti, M., Baioui, R., & Ghabriche, R. (2013). Evaluation of the Cd2+ phytoextraction potential in the xerohalophyte Salsola kali L. and the impact of EDTA on this process. Ecological Engineering, 60, 309–315.

    Article  Google Scholar 

  • Bradley, P. M., & Morris, J. T. (1991). Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. Journal of Experimental Botany, 42(12), 1525–1532.

    Article  CAS  Google Scholar 

  • Cambrollé, J., Redondo-Gómez, S., Mateos-Naranjo, E., & Figueroa, M. E. (2008). Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Marine Pollution Bulletin, 56, 2037–2042.

    Article  PubMed  CAS  Google Scholar 

  • Canalejo, A., Martínez-Domínguez, D., Córdoba, F., & Torronteras, R. (2014). Salt tolerance is related to a specific antioxidant response in the halophyte cordgrass, Spartina densiflora. Estuarine, Coastal and Shelf Science, 146, 68–75.

    Article  CAS  Google Scholar 

  • Chai, M., Shi, F., Li, R., & Shen, X. (2014). Heavy metal contamination and ecological risk in Spartina alterniflora marsh in intertidal sediments of Bohai Bay, China. Marine Pollution Bulletin, 84, 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary, D. R., Rathore, A. P., & Jha, B. (2018). Aboveground, belowground biomass and nutrients pool in Salicornia brachiata at coastal area of India: Interactive effects of soil characteristics. Ecological Research, 33, 1207–1218.

    Article  CAS  Google Scholar 

  • Chaudhri, I. I., Shah, B. H., Naqvi, N., & Mallick, I. A. (1964). Investigations on the role of Suaeda fruticosa Forsk in the reclamation of saline and alkaline soils in West Pakistan plains. Plant and Soil, 21, 1–7.

    Article  Google Scholar 

  • Chowdhury, R., Favas, P. J., Pratas, J., Jonathan, M. P., Ganesh, P. S., & Sarkar, S. K. (2015). Accumulation of trace metals by mangrove plants in Indian Sundarban Wetland: prospects for phytoremediation. International journal of phytoremediation, 17(9), 885–894.

    Google Scholar 

  • Clemens, S. (2001). Molecular mechanisms of plant metal tolerance and homeostasis. Planta, 212, 475–486.

    Article  CAS  PubMed  Google Scholar 

  • da Silva, M. N., Mucha, A. P., Rocha, A. C., Silva, C., Carli, C., Gomes, C. R., & Almeida, C. M. R. (2014). Evaluation of the ability of two plants for the phytoremediation of Cd in salt marshes. Estuarine, Coastal and Shelf Science, 141, 78–84.

    Article  CAS  Google Scholar 

  • DalCorso, G., Manara, A., & Furini, A. (2013). An overview of heavy metal challenge in plants: From roots to shoots. Metallomics, 5, 1117–1132.

    Article  CAS  PubMed  Google Scholar 

  • Dar, M. I., Naikoo, M. I., Rehman, F., Naushin, F., & Khan, F. A. (2015). Proline accumulation in plants: Roles in stress tolerance and plant development. In N. Iqbal, N. Rahat, & N. A. Khan (Eds.), Osmolytes and plants acclimation to changing environment: Emerging omics technologies (pp. 155–166). New Delhi: Springer. https://doi.org/10.1007/978-81-322-2616-1_9.

    Chapter  Google Scholar 

  • Dar, M. I., Khan, F. A., & Rehman, F. (2016). Responses of antioxidative defense system and composition of photosynthetic pigments in Brassica juncea L. upon imidacloprid treatments. Abiotic and Biotic Stress Journal, 1, 3–15.

    Article  Google Scholar 

  • Dar, M. I., Naikoo, M. I., Green, I. D., Sayeed, N., Ali, B., & Khan, F. A. (2018). Heavy metal hyperaccumulation and hypertolerance in Brassicaceae. In M. Hasanuzzaman, K. Nahar, & M. Fujita (Eds.), Plants under metal and metalloid stress (pp. 263–276). Singapore: Springer.

    Chapter  Google Scholar 

  • Das, M., & Maiti, S. K. (2007). Metal accumulation in A. baccifera growing naturally on abandoned copper tailings pond. Environmental Monitoring and Assessment, 127, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Deinlein, U., Stephan, A. B., Horie, T., Luo, W., Xu, G., & Schroeder, J. I. (2014). Plant salt-tolerance mechanisms. Trends in Plant Science, 19, 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisa, S. S., & Eid, M. A. (2011). Assessment of the phytoextraction potential of some fast growing halophytes and maize plants. Australian Journal of Basic and Applied Sciences, 5, 88–95.

    CAS  Google Scholar 

  • Eissa, M. A. (2015). Impact of compost on metals phytostabilization potential of two halophytes species. International Journal of Phytoremediation, 17, 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. The New Phytologist, 179, 945–963.

    Article  CAS  PubMed  Google Scholar 

  • Gall, J. E., & Rajakaruna, N. (2013). The physiology, functional genomics, and applied ecology of heavy metal-tolerant Brassicaceae. In M Lang (Ed), Brassicaceae: Characterization, functional genomics and health benefits (pp. 121–148). New York: Nova Science Publishers.

    Google Scholar 

  • Gargouri, M., Magné, C., Dauvergne, X., Ksouri, R., El Feki, A., Metges, M. A. G., & Talarmin, H. (2013). Cytoprotective and antioxidant effects of the edible halophyte Sarcocornia perennis L. (swampfire) against lead-induced toxicity in renal cells. Ecotoxicology and Environmental Safety, 95, 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya, T., Nouairi, I., Slama, I., Messedi, D., Grignon, C., Adbelly, C., & Ghorbel, M. H. (2005). Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. Journal of Plant Physiology, 162, 1133–1140.

    Article  CAS  PubMed  Google Scholar 

  • Ghnaya, T., Slama, I., Messedi, D., Grignon, C., Ghorbel, M. H., & Adbelly, C. (2007). Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: Consequences on growth. Chemosphere, 67, 72–79.

    Article  CAS  PubMed  Google Scholar 

  • Glenn, E. P., Brown, J. J., & Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Critical Reviews in Plant Sciences, 18, 227–255.

    Article  Google Scholar 

  • Glenn, E. P., Anday, T., Chaturvedi, R., Martinez-Garcia, R., Pearlstein, S., Soliz, D., Nelson, S. G., & Felger, R. S. (2013). Three halophytes for saline-water agriculture: An oilseed, a forage and a grain crop. Environmental and Experimental Botany, 92, 110–121.

    Article  Google Scholar 

  • Gómez-Cadenas, A., Tadeo, F. R., Primo-Millo, E., & Talon, M. (1998). Involvement of abscisic acid and ethylene in the responses of citrus seedlings to salt shock. Physiologia Plantarum, 103, 475–484.

    Article  Google Scholar 

  • Hadi, F., Bano, A., & Fuller, M. P. (2013). Augmented phytoextraction of lead (Pb2+)-polluted soils: A comparative study of the effectiveness of plant growth regulators, EDTA, and plant growth–promoting rhizobacteria. Bioremediation Journal, 17(2), 124–130.

    Article  CAS  Google Scholar 

  • Hagemeyer, J., & Waisel, Y. (1988). Excretion of ions (Cd2+, Li+, Na+ and Cl−) by Tamarix aphylla. Physiologia Plantarum, 73, 541–546.

    Article  CAS  Google Scholar 

  • Hartzendorf, T., & Rolletschek, H. (2001). Effects of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquatic Botany, 69(2–4), 195–208.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Oztürk, M. (2019). Abiotic stress responses and utilization of halophytes. Ecophysiology. Singapore: Springer. ISBN : 978-981-13-3761-1.

    Book  Google Scholar 

  • Iversen, J. (1936). Biologische Pflanzentypen als Hilfsmittel in der Vegetations for schung. Dissertation. Medd. fraSkalling Laboratoriet, pp. 1–224.

    Google Scholar 

  • Jordan, F. L., Robin-Abbott, M., Maier, R. M., & Glenn, E. P. (2002). A comparison of chelator-facilitated metal uptake by a halophyte and a glycophyte. Environmental Toxicology and Chemistry, 21, 2698–2704.

    Article  CAS  PubMed  Google Scholar 

  • Kachout, S. S., Mansoura, A. B., & Ouerghi, Z. (2012). Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. Journal of Science and Food Agriculture, 92, 336–342.

    Article  CAS  Google Scholar 

  • Kadukova, J., Manousaki, E., & Kalogerakis, N. (2008). Pb and Cd accumulation and phyto-excretion by salt cedar (Tamarix smyrnensis bunge). International Journal of Phytoremediation, 10(1), 31–46.

    Article  CAS  PubMed  Google Scholar 

  • Ke-Fu, Z. (1991). Desalinization of saline soils by Suaeda salsa. Plant and Soil, 135, 303–305.

    Article  Google Scholar 

  • Krämer, U. (2005). Phytoremediation: Novel approaches to cleaning up polluted soils. Current Opinion in Biotechnology, 16, 133–141.

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha, A., Rani, R., Kumar, S., & Gautam, A. (2016). Heavy metal detoxification and tolerance mechanisms in plants: Implications for phytoremediation. Environmental Reviews, 24(1), 39–51.

    Article  CAS  Google Scholar 

  • Lefèvre, I., Marchal, G., Meerts, P., Corréal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152.

    Article  CAS  Google Scholar 

  • Liang, L., Liu, W., Sun, Y., Huo, X., Li, S., & Zhou, Q. (2017). Phytoremediation of heavy metal contaminated saline soils using halophytes: Current progress and future perspectives. Environmental Reviews, 25, 269–281.

    Article  CAS  Google Scholar 

  • Litalien, A., & Zeeb, B. (2020). Curing the earth: A review of anthropogenic soil salinization and plant-based strategies for sustainable mitigation. Science of the Total Environment, 698, 134235. https://doi.org/10.1016/j.scitotenv.2019.134235

  • Liu, C., & Lin, Y. (2013). Reclamation of copper-contaminated soil using EDTA or citric acid coupled with dissolved organic matter solution extracted from distillery sludge. Environmental Pollution, 178, 97–101.

    Article  CAS  PubMed  Google Scholar 

  • Lokhande, V. H., Nikam, T. D., & Suprasanna, P. (2009). Sesuvium portulacastrum (L.) a promising halophyte: Cultivation, utilization and distribution in India. Genetic Resources and Crop Evolution, 56, 741–774.

    Article  Google Scholar 

  • Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere, 119, 209–216.

    Article  CAS  PubMed  Google Scholar 

  • Luo, H., Li, H., Zhang, X., & Fu, J. (2011). Antioxidant responses and gene expression in perennial ryegrass (Lolium perenne L.) under cadmium stress. Ecotoxicology, 20(4), 770–778.

    Article  CAS  PubMed  Google Scholar 

  • Lutts, S., Lefèvre, I., Delpérée, C., Kivits, S., Dechamps, C., Robledo, A., & Correal, E. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  • Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68, 1–13.

    Article  CAS  Google Scholar 

  • Maiti, S. K., & Nandhini, S. (2005). Bioavailability of metals in fly ash and their bioaccumulation in naturally occurring vegetation. Environmental Monitoring and Assessment, 116(1), 263–273.

    Google Scholar 

  • Mangalassery, S., Dayal, D., Kumar, A., Bhatt, K., Nakar, R., Kumar, A., Singh, J. P., & Misra, A. K. (2017). Pattern of salt accumulation and its impact on salinity tolerance in two halophyte grasses in extreme saline desert in India. Indian Journal of Experimental Biology, 55, 542–548.

    CAS  Google Scholar 

  • Manousaki, E., Kokkali, F., & Kalogerakis, N. (2009). Influence of salinity on lead and cadmium accumulation by the salt cedar (Tamarix smyrnensis Bunge). Journal of Chemical Technology & Biotechnology, 84(6), 877–883.

    Google Scholar 

  • Manousaki, E., & Kalogerakis, N. (2011). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemistry Research, 50, 656–660.

    Article  CAS  Google Scholar 

  • Manousaki, E., Kadukova, J., Papadantonakis, N., & Kalogerakis, N. (2008). Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environmental Research, 106, 326–332.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, M. M. F. (2000). Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum, 43, 491–500.

    Article  CAS  Google Scholar 

  • Marques, B., Lillebø, A. I., Pereira, E., & Duarte, A. C. (2011). Mercury cycling and sequestration in salt marshes sediments: An ecosystem service provided by Juncus maritimus and Scirpus maritimus. Environmental Pollution, 159, 1869–1876.

    Article  CAS  PubMed  Google Scholar 

  • Martinoia, E., Maeshima, M., & Neuhaus, H. E. (2007). Vacuolar transporters and their essential role in plant metabolism. Journal of Experimental Botany, 58, 83–102.

    Article  CAS  PubMed  Google Scholar 

  • Moghaieb, R. E. A., Saneoka, H., & Fujita, K. (2004). Effect of salinity on osmotic adjustment, glycine betaine accumulation and the betaine aldehyde dehydrogenase gene expression in two halophytic plants, Salicornia europaea and Suaeda maritime. Plant Science, 166(5), 1345–1349.

    Article  CAS  Google Scholar 

  • Muchate, N. S., Nikalje, G. C., Rajurkar, N. S., Suprasanna, P., & Nikam, T. D. (2016). Plant salt stress: Adaptive responses, tolerance mechanism and bioengineering for salt tolerance. The Botanical Review, 82, 371–406.

    Article  Google Scholar 

  • Naikoo, M. I., Dar, M. I., & Khan, F. A. (2019). Trophic transfer and bioaccumulation of lead along soil–plant–aphid–ladybird food chain. Environment Science and Pollution Research, 26, 23460–23470.

    Article  CAS  Google Scholar 

  • Nedjimi, B., & Daoud, Y. (2009). Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora: Morphology, Distribution, Functional Ecology of Plants, 204, 316–324.

    Article  Google Scholar 

  • Neilson, S., & Rajakaruna, N. (2014). Phytoremediation of agricultural soils: Using plants to clean metal-contaminated arable lands. In A. A. Ansari, S. S. Gill, & G. R. Lanza (Eds.), Phytoremediation: Management of environmental contaminants (pp. 159–168). Dordrecht: Springer.

    Google Scholar 

  • Nouri, H., Chavoshi Borujeni, S., Nirola, R., Hassanli, A., Beecham, S., Alaghmand, S., & Mulcahy, D. (2017). Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Safety and Environment Protection, 107, 94–107.

    Article  CAS  Google Scholar 

  • O’Leary, J. W. (1971). Physiological basis for plant growth inhibition due to salinity. In W. G. McGinnies, B. J. Goldman, & P. Paylore (Eds.), Food, Fiber and the arid lands (pp. 332–336). Arizona: The University of Arizona Press Tucson.

    Google Scholar 

  • Pagter, M., Bragato, C., Malagoli, M., & Brix, H. (2009). Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany, 90, 43–51.

    Article  CAS  Google Scholar 

  • Panda, A., Rangani, J., & Parida, A. K. (2017). Efficient regulation of arsenic translocation to shoot tissue and modulation of phytochelatin levels and antioxidative defense system confers salinity and arsenic tolerance in the halophyte Suaeda maritima. Environmental and Experimental Botany, 143, 149–171.

    Article  CAS  Google Scholar 

  • Panta, S., Flowers, T., & Shabala, S. (2014). Halophyte agriculture: Success stories. Environmental and Experimental Botany, 107, 71–83.

    Article  Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety, 60(3), 324–349.

    Article  CAS  PubMed  Google Scholar 

  • Parvin, S., Lee, O. R., Sathiyaraj, G., Khorolragchaa, A., Kim, Y. J., & Yang, D. C. (2014). Spermidine alleviates the growth of saline-stressed ginseng seedlings through antioxidative defense system. Gene, 537(1), 70–78.

    Article  CAS  PubMed  Google Scholar 

  • Pedro, C. A., Santos, M. S., & Gonçalves, S. C. (2013). The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Marine Environmental Research, 92, 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits, E. (2005). Phytoremediation. Annual Review of Plant Biology, 56, 15–39.

    Article  CAS  PubMed  Google Scholar 

  • Pivetz, B. C., & United States Environmental Protection Agency. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA/540/S-01/500. Washington, DC: USEPA.

    Google Scholar 

  • Popova, L. P., Stoinova, Z. G., & Maslenkova, L. T. (1995). Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. Journal of Plant Growth Regulation, 14(4), 211–218.

    Article  CAS  Google Scholar 

  • Przymusiński, R., Rucińska, R., & Gwóźdź, E. A. (2004). Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environmental and Experimental Botany, 52, 53–61.

    Article  CAS  Google Scholar 

  • Rajakaruna, N., Tompkins, K. M., & Pavicevic, P. G. (2006). Phytoremediation: An affordable green technology for the clean-up of metal contaminated sites in Sri Lanka. Ceylon Journal of Science, 35, 25–39.

    Google Scholar 

  • Rajpurohit, K. S., & Sen, D. N. (1977). Soil salinity and seed germination under water stress. Trans Isdt Ucds, 2, 106–110.

    CAS  Google Scholar 

  • Rajpurohit, K. S., & Sen, D. N. (1980). Osmotic potentials of plants and soils of Pachpadra salt basin in Thar desert. In H. S. Mann (Ed.), Arid zone research and development (pp. 191–198). Jodhpur: Scientific Publication.

    Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661.

    Article  CAS  Google Scholar 

  • Reboreda, R., & Caçador, I. (2007). Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environmental Pollution, 146(1), 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Gómez, S., Mateos-Naranjo, E., & Andrades-Moreno, L. (2010). Accumulation and tolerance characteristics of cadmium in a halophytic Cd hyper accumulator, Arthrocnemum macrostachyum. Journal of Hazardous Materials, 184(1–3), 299–307.

    Article  PubMed  CAS  Google Scholar 

  • Rozema, J., & Schat, H. (2013). Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environmental and Experimental Botany, 92, 83–95.

    Article  CAS  Google Scholar 

  • Salvi, H. D., & Kamboj, R. D. (2017). Diversity of halophytes in Gulf of Kachchh, Gujarat. International Journal of Life Science Scientific Research, 3(3), 995–1002.

    Google Scholar 

  • Santhanakrishnan, D., Perumal, R. K., Kanth, S. V., Jonnalagadda, R. R., & Bangaru, C. (2014). Studies on the physiological and biochemical characteristics of Salicornia brachiata: Influence of saline stress due to soaking wastewater of tannery. Desalination and Water Treatment, 52, 6022–6029.

    Article  CAS  Google Scholar 

  • Schwitzgue’bel, J. P., Kumpiene, J., Comino, E., & Vanek, T. (2009). From green to clean: A promising and sustainable approach towards environmental remediation and human health for the 21st century. Agrochimica, 53, 209.

    Google Scholar 

  • Sen, D. N., Rajpurohit, K. S., & Wissing, F. W. (1982). Survey and adaptive biology of halophytes in western Rajasthan, India. In D. N. Sen, K. S. Rajpurohit (Eds.), Contributions to the ecology of halophytes (Tasks for vegetation science, Vol. 2). Dordrecht: Springer.

    Google Scholar 

  • Shao, H., Xua, C., Tang, X., & Wang, H. (2016). Salinity tolerance mechanism of economic halophytes from physiological to molecular hierarchy for improving food quality. Current Genomics, 17, 207–214.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shevyakova, N. I., Radyukina, N. L., Kartashov, A. V., Ivanov, Y. V., & Kuznetsov, V. V. (2007). Functioning of defense systems in halophytes and glycophytes under progressing salinity. Russian Journal of Plant Physiology, 54, 806–815.

    Article  CAS  Google Scholar 

  • Shrestha, B., Lipe, S., Johnson, K. A., Zhang, T. Q., Retzlaff, W., & Lin, Z. Q. (2006). Soil hydraulic manipulation and organic amendment for the enhancement of selenium volatilization in a soil–pickleweed system. Plant and Soil, 288(1–2), 189–196.

    Article  CAS  Google Scholar 

  • Singh, G. (2009). Salinity-related desertification and management strategies: Indian experience. Land Degradation and Development, 20, 367–385.

    Article  Google Scholar 

  • Singh, S. K., Sharma, H. C., Goswami, A. M., Datta, S. P., & Singh, S. P. (2000). In vitro growth and leaf composition of grapevine cultivars as affected by sodium chloride. Biologia Plantarum, 43(2), 283–286.

    Article  CAS  Google Scholar 

  • Singh, N., Mishra, A., & Jha, B. (2014). Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene, 547, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J. C., Malick, F. K., Endreszl, C., Davies, E. C., & Murray, K. S. (1998). Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum. Physiologia Plantarum, 102, 360–368.

    Article  CAS  Google Scholar 

  • Touchette, B. W. (2006). Salt tolerance in a Juncus roemerianus brackish marsh: Spatial variations in plant water relations. Journal of Experimental Marine Biology and Ecology, 337, 1–12.

    Article  CAS  Google Scholar 

  • Turgut, C., Pepe, M. K., & Cutright, T. J. (2004). The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environmental Pollution, 131, 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Van Oosten, M. J., & Maggio, A. (2015). Functional biology of halophytes in the phytoremediation of heavy metal contaminated soils. Environmental and Experimental Botany, 111, 135–146.

    Article  CAS  Google Scholar 

  • Vårhammar, A., McLean, C. M., Yu, R. M., & MacFarlane, G. R. (2019). Uptake and partitioning of metals in the Australian saltmarsh halophyte, samphire (Sarcocornia quinqueflora). Aquatic Botany, 156, 25–37.

    Article  Google Scholar 

  • Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153.

    Article  Google Scholar 

  • Vromman, D., Flores-Bavestrello, A., Šlejkovec, Z., Lapaille, S., Teixeira-Cardoso, C., Briceño, M., Kumar, M., Martínez, J. P., & Lutts, S. (2011). Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil. Science Total Environment, 412–413, 286–295.

    Article  CAS  Google Scholar 

  • Wang, D., Wang, H., Han, B., Wang, B., Guo, A., Zheng, D., Liu, C., Chang, L., Peng, M., & Wang, X. (2012). Sodium instead of potassium and chloride is an important macronutrient to improve leaf succulence and shoot development for halophyte Sesuvium portulacastrum. Plant Physiology and Biochemistry, 51, 53–62.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H.L., Tian, C.Y., Jiang, L., & Wang, L. (2013). Remediation of heavy metals contaminated saline soils: A halophyte choice? Environmental Science and Technology 48(1): 21–22.

    Google Scholar 

  • Wei, S., Teixeira da Silva, J. A., & Zhou, Q. (2008). Agro-improving method of phytoextracting heavy metal contaminated soil. Journal of Hazardous Materials, 150, 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Windham, L., Weis, J. S., & Weis, P. (2001). Patterns and processes of mercury release from leaves of two dominant salt marsh macrophytes, Phragmites australis and Spartina alterniflora. Estuaruaries, 24(6), 787–795.

    Article  Google Scholar 

  • Xu, J., Yin, H., Liu, X., & Li, X. (2010). Salt affects plant Cd-stress responses by modulating growth and Cd accumulation. Planta, 231(2), 449–459.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Wei, Z., Zhang, X., Chen, X., Yue, D., & Yin, Q. (2014). Biochar from Alternanthera philoxeroides could remove Pb(II) efficiently. Bioresource Technology, 171, 227–232.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Li, M., Yang, H., Li, X., & Cui, Z. (2018). Physiological responses of Suaeda glauca and Arabidopsis thaliana in phytoremediation of heavy metals. Journal of Environmental Management, 223, 132–139.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Naikoo, M.I., Kafeel, U., Naushin, F., Khan, F.A. (2021). Halophytes in India and Their Role in Phytoremediation. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-57635-6_115

Download citation

Publish with us

Policies and ethics