Skip to main content

Energy Harvesting from Knee Motion Using Dielectric Elastomer Generator

  • Conference paper
  • First Online:
Advances in Asset Management and Condition Monitoring

Abstract

The complement of standalone auxiliary sources with energy harvesters is essential in connection to mobile electronic devices and low power medical appliances due to some shortcomings like recharging of auxiliary cells and operation at low power. This paper deals with a motion based energy harvester which can harvest electrical energy in synchronous to human knee motion using dielectric elastomer (DE). Dielectric elastomer generator (DEG) adopts electrostatic energy conversion principle, by virtue of which the ambient mechanical motion converts into an analog electrical signal. It employs a biaxial stretched soft elastomer with compliant electrodes. At first, an electromechanical prototype is developed to be attached at the knee joints. The prototype constitutes of a DEG, a standalone power supply so as to prime the DEG and an electrical load. The periodical displacement of the knee leads to a synchronous change in capacitance associated with the DEG transducer. In consequence, a relatively high voltage generates across the load. With respect to different knee joint rotation angles, the harvested electrical voltage and current values are measured. Corresponding output electrical signals are measured and presented with respect to time with relevant variations with pre-stretch, coating, and deflection on DE. Parameters like peak power, specific energy and energy conversion efficiency are calculated at different conditions to determine the best condition for optimum electrical energy harvesting from the human knee motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elvin, N., Erturk, A.: Advances in Energy Harvesting Methods, vol. I, pp. 4–9, pp. 400–408. Springer, New York (2013)

    Google Scholar 

  2. Pelrine, R., Kornbluh, R.D., Eckerle, J., Jeuck, P., Oh, S., Pei, Q., Stanford, S.: Dielectric elastomers: generator mode fundamentals and applications. In: Proceedings of SPIE 4329, Smart Structures and Materials: Electroactive Polymer Actuators and Devices (2001). https://doi.org/10.1117/12.432640

  3. Pozzi, M., Zhu, M.: Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation. Smart Mater. Struct. 20(5), 055007 (2011)

    Article  Google Scholar 

  4. Donelan, J.M., Li, Q., Naing, V., Hoffer, J., Weber, D., Kuo, A.D.: Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319(5864), 807–810 (2008)

    Article  Google Scholar 

  5. Jean-Mistral, C., Basrour, S., Chaillout, J.-J.: Dielectric polymer: scavenging energy from human motion. In: Proceedings of SPIE, vol. 6927, no. 692716 (2008)

    Google Scholar 

  6. Romero, E., Neuman, M., Warrington, R.: Rotational energy harvester for body motion. In: 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 1325–1328. IEEE (2011)

    Google Scholar 

  7. Saha, C., OâAZdonnell, T., Wang, N., McCloskey, P.: Electromagnetic generator for harvesting energy from human motion. Sens. Actuators A 147(1), 248–253 (2008)

    Article  Google Scholar 

  8. Chiba, S., Waki, M., Kornbluh, R., Pelrine, R.: Innovative power generators for energy harvesting using electroactive polymer artificial muscles, p. 692715 (2008)

    Google Scholar 

  9. Sahu, R.K., Patra, K., Bhaumik, S., Pandey, A.K., Setua, D.K.: Stress-strain behaviour of dielectric elastomer for actuators. Appl. Mech. Mater. 789–790, 837–841 (2015)

    Article  Google Scholar 

  10. Sahu, R.K., Saini, A., Ahmad, D., Patra, K., Szpunar, J.A.: Estimation and validation of Maxwell stress of planar dielectric elastomer actuators. J. Mech. Sci. Technol. 30(1), 429–436 (2016)

    Article  Google Scholar 

  11. Panigrahi, R., Mishra, S.K.: An electrical model of a dielectric elastomer generator. IEEE Trans. Power Electron. 33(4), 2792–2797 (2018)

    Article  Google Scholar 

  12. Sadangi, A.S., Sahu, S.K., Patra, K.: Comparison of circuits for dielectric elastomer based energy harvesting. In: IEEE Conference Series: Inventive Systems and Control, pp. 413–417 (2018). https://doi.org/10.1109/ICISC.2018.8399105

  13. Huang, J., Shian, S., Suo, Z., Clarke, D.R.: Dielectric elastomer generator with equibiaxial mechanical loading for energy harvesting. In: Electroactive Polymer Actuators and Devices (EAPAD) 2013 Proceedings of SPIE, vol. 8687 (2013). https://doi.org/10.1117/12.2009724. 86870Q · © 2013 SPIE · CCC code: 0277-786X/13/$18

  14. Van Kessel, R., Czech, B., Bauer, P., Ferreira, J.A.: Optimizing the dielectric elastomer energy harvesting cycles. In: IECON Proceedings of Industrial Electronics Conference, pp. 1281–1286 (2010)

    Google Scholar 

  15. Lee, R.H., Basuli, U., Lyu, M.-Y., Kim, E.S., Nah, C.: Fabrication and performance of a donut-shaped generator based on dielectric elastomer. J. Appl. Polymer Sci. 131(7), 40076 (2014)

    Google Scholar 

  16. Pelrine, R.: Generator mode: Devices and applications (2008). https://doi.org/10.1016/b978-0-08-047488-5.00015-0

  17. Pelrine, R., Kornbluh, R., Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P.: Electromechanical transduction effects in dielectric elastomers: actuation, sensing, stiffness modulation and electric energy generation. In: Dielectric Elastomers as Electromechanical Transducers, pp. 1–12. Elsevier Science & Technology, Oxford (2011)

    Google Scholar 

  18. Sommer-Larsen, P., Benslimane, M.: Actuators and sensors from dielectric elastomer with smart compliant electrodes. In: Carpi, F., De Rossi, D., Kornbluh, R., Pelrine, R., Sommer-Larsen, P. (eds.) Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, pp. 103–108 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Kumar Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sahu, S.K., Sadangi, A.S., Patra, K. (2020). Energy Harvesting from Knee Motion Using Dielectric Elastomer Generator. In: Ball, A., Gelman, L., Rao, B. (eds) Advances in Asset Management and Condition Monitoring. Smart Innovation, Systems and Technologies, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-030-57745-2_104

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57745-2_104

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57744-5

  • Online ISBN: 978-3-030-57745-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics