Skip to main content

\(\mathsf {BioLocker}\): A Practical Biometric Authentication Mechanism Based on 3D Fingervein

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12147))

Included in the following conference series:

Abstract

We design a consecution of protocols which allows organizations to have secure strong access control of their users to their desktop machines based on biometry. It provides both strong secure authentication and privacy. Moreover, our mechanism allows the system admins to grant a various level of access to their end-users by fine tuning access control policy. Our system implements privacy-by-design. It separates biometric data from identity information. It is practical: we fully implemented our protocols as a proof of concept for a hospital. We use a 3D fingervein scanner to capture the biometric data of the user on a Raspberry Pi. For the biometry part, we developed an optimal way to aggregate scores using sequential distinguishers. It trades desired \(\mathsf {FAR}\) and \(\mathsf {FRR}\) against an average number of biometric captures.

F. Betül Durak—The work was done when the author was in LASEC/EPFL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.global-id.ch

    https://www.idiap.ch

    https://www.hevs.ch

    https://www.epfl.ch.

  2. 2.

    \(\mathsf {FAR}\) is the false acceptance rate, i.e. the probability that a wrong finger is accepted, \(\mathsf {FRR}\) is the false rejection rate, i.e. the probability that the right finger is rejected.

  3. 3.

    A new version is currently under development.

References

  1. Anjos, A., Günther, M., de Freitas Pereira, T., Korshunov, P., Mohammadi, A., Marcel, S.: Continuously reproducing toolchains in pattern recognition and machine learning experiments. In: International Conference on Machine Learning (ICML), August 2017

    Google Scholar 

  2. Anjos, A., El Shafey, L., Wallace, R., Günther, M., McCool, C., Marcel, S.: Bob: a free signal processing and machine learning toolbox for researchers. In: 20th ACM Conference on Multimedia Systems (ACMMM), Nara, Japan, October 2012

    Google Scholar 

  3. Balli, F., Durak, F.B., Vaudenay, S.: BioID: a privacy-friendly identity document. In: Mauw, S., Conti, M. (eds.) STM 2019. LNCS, vol. 11738, pp. 53–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31511-5_4

    Chapter  Google Scholar 

  4. Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 583–599. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_34

    Chapter  MATH  Google Scholar 

  5. Daas, S., Boughazi, M., Sedhane, M., Bouledjfane, B.: A review of finger vein biometrics authentication system. In: 2018 International Conference on Applied Smart Systems (ICASS), pp. 1–6, November 2018

    Google Scholar 

  6. Durak, F.B., Huguenin-Dumittan, L., Vaudenay, S.: BioLocker: a practical biometric authentication mechanism based on 3D fingervein. Cryptology ePrint Archive, Report 2020/453 (2020). https://eprint.iacr.org/2020/453

  7. Fahmy, M.S., Atyia, A.F., Elfouly, R.S.: Biometric fusion using enhanced SVM classification. In: 2008 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 1043–1048, August 2008

    Google Scholar 

  8. Junod, P.: On the optimality of linear, differential, and sequential Distinguishers. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 17–32. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_2

    Chapter  Google Scholar 

  9. Kabir, W., Ahmad, M.O., Swamy, M.N.S.: Normalization and weighting techniques based on genuine-impostor score fusion in multi-biometric systems. IEEE Trans. Inf. Forensics Secur. 13(8), 1989–2000 (2018)

    Article  Google Scholar 

  10. Kang, W., Liu, H., Luo, W., Deng, F.: Study of a full-view 3D finger vein verification technique. IEEE Trans. Inf. Forensics Secur. 15, 1175–1189 (2020)

    Article  Google Scholar 

  11. Lee, E.C., Lee, H.C., Park, K.R.: Finger vein recognition using minutia-based alignment and local binary pattern-based feature extraction. Int. J. Imag. Syst. Technol. 19(3), 179–186 (2009)

    Article  Google Scholar 

  12. Lumini, A., Nanni, L.: Overview of the combination of biometric matchers. Inf. Fusion 33, 71–85 (2017)

    Article  Google Scholar 

  13. Ma, Y., Cukic, B., Singh, H.: A classification approach to multi-biometric score fusion. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 484–493. Springer, Heidelberg (2005). https://doi.org/10.1007/11527923_50

    Chapter  Google Scholar 

  14. Miura, N., Nagasaka, A., Miyatake, T.: Feature extraction of finger-vein patterns based on repeated line tracking and its application to personal identification. Mach. Vision Appl. 15(4), 194–203 (2004)

    Article  Google Scholar 

  15. Miura, N., Nagasaka, A., Miyatake, T.: Extraction of finger-vein patterns using maximum curvature points in image profiles. IEICE Trans. 90-D(8), 1185–1194 (2007)

    Google Scholar 

  16. Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.: Likelihood ratio-based biometric score fusion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 342–347 (2008)

    Article  Google Scholar 

  17. Ni, L., Zhang, Y., Liu, S., Huang, H., Li, W.: A decision reliability ratio based fusion scheme for biometric verification. In: Proceedings of the 9th International Conference on Bioinformatics and Biomedical Technology, ICBBT 2017, New York, NY, USA, pp. 16–21. ACM (2017)

    Google Scholar 

  18. Shaheed, K., Liu, H., Yang, G., Qureshi, I., Gou, J., Yin, Y.: A systematic review of finger vein recognition techniques. Information 9(9), 213 (2018)

    Article  Google Scholar 

  19. Siegmund, D.: Sequential Analysis: Tests and Confidence Intervals. Springer Series in Statistics. Springer, New York (1985). https://doi.org/10.1007/978-1-4757-1862-1

    Book  MATH  Google Scholar 

  20. Syazana-Itqan, K., Syafeeza, A.R., Saad, N.M., Hamid, N.A., Saad, W.H.B.M.: A review of finger-vein biometrics identification approaches. Indian J. Sci. Technol. 9(32), 1–9 (2016)

    Article  Google Scholar 

  21. Tome, P., Vanoni, M., Marcel, S.: On the vulnerability of finger vein recognition to spoofing. In: Brömme, A., Busch, C. (eds.) Proceedings of the 13th International Conference of the Biometrics Special Interest Group, BIOSIG 2014, Volume 230 of Lecture Notes in Informatics, Darmstadt, Germany, 10–12 September 2014, pp. 111–120. Gesellschaft für Informatik (2014)

    Google Scholar 

  22. Ton, B.T., Veldhuis, R.N.J.: A high quality finger vascular pattern dataset collected using a custom designed capturing device. In: Fiérrez, J., Kumar, A., Vatsa, M., Veldhuis, R.N.J., Ortega-Garcia, J. (eds.) International Conference on Biometrics, ICB 2013, 4–7 June 2013, Madrid, Spain, pp. 1–5. IEEE (2013)

    Google Scholar 

  23. Ulery, B., Hicklin, A., Watson, C., Fellner, W., Hallinan, P.: Studies of biometric fusion. NIST Interagency Report, 7346 (2006)

    Google Scholar 

  24. Wang, Y., Xie, W., Xiaojie, Yu., Shark, L.-K.: An automatic physical access control system based on hand vein biometric identification. IEEE Trans. Consum. Electron. 61(3), 320–327 (2015)

    Article  Google Scholar 

  25. Yang, W., et al.: Securing mobile healthcare data: a smart card based cancelable finger-vein bio-cryptosystem. IEEE Access 6, 36939–36947 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are grateful to Lambert Sonna and the Global ID SA company for having sponsored this project. We also thank Dóra Neubrandt for her contribution in biometric acquisition and extraction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Vaudenay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Durak, F.B., Huguenin-Dumittan, L., Vaudenay, S. (2020). \(\mathsf {BioLocker}\): A Practical Biometric Authentication Mechanism Based on 3D Fingervein. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds) Applied Cryptography and Network Security. ACNS 2020. Lecture Notes in Computer Science(), vol 12147. Springer, Cham. https://doi.org/10.1007/978-3-030-57878-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57878-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57877-0

  • Online ISBN: 978-3-030-57878-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics