Skip to main content

Automated Deep Learning for Medical Imaging

  • Living reference work entry
  • First Online:
Artificial Intelligence in Medicine

Abstract

Automated deep learning is a subset of machine learning. It aims to automate the machine learning workflow allowing those with limited or no coding expertise to create deep learning algorithms. It is available on a number of commercial platforms. A number of limitations still exist for automated deep learning that clinicians must be aware of. Datasets must still be curated and labelled and data governance obstacles must be navigated. Additionally, the challenges of interpretability, generalizability, and bias still exist. Automated deep learning for medical imaging has demonstrated promising results within the clinical literature when compared against bespoke machine learning models. It has generated considerable excitement as it offers the potential to democratize artificial intelligence in healthcare. In the following chapter, we will explore the role of automated deep learning within the rapidly progressing field of clinical artificial intelligence. We will examine its challenges and limitations, the principles and process of use, and what we consider the future directions of automated deep learning to be.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Metz C. Building AI that can build AI. The New York Times Çevrimiçi (Erişim, 4 Şubat 2018). 2017. https://www.nytimes.com/2017/11/05/technology/machine-learning-artificial-intelligence-ai.html

  2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    Article  CAS  Google Scholar 

  3. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58.

    Article  Google Scholar 

  4. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  CAS  Google Scholar 

  5. Yao Q, Wang M, Chen Y, Dai W, Li Y-F, Tu W-W, Yang Q, Yu Y. Taking human out of learning applications: a survey on automated machine learning. arXiv:181013306v4 [Internet]. 2019 Dec 16. https://arxiv.org/abs/1810.13306

  6. Economist T. Million-dollar babies. The Economist, Apr 2nd. 2016;9.

    Google Scholar 

  7. Metz C. AI researchers are making more than $1 million, even at a nonprofit. NY Times. 2018.

    Google Scholar 

  8. Toews R. Deep learning’s carbon emissions problem [Internet]. 2020. https://www.forbes.com/sites/robtoews/2020/06/17/deep-learnings-climate-change-problem/?sh=500edbee6b43

  9. Marcus G, Davis E. GPT-3, bloviator: OpenAI’s language generator has no idea what it’s talking about. Technol Rev. 2020. https://www.technologyreview.com/2020/08/22/1007539/gpt3-openai-language-generator-artificial-intelligence-ai-opinion/

  10. Brown TB, Mann B, Ryder N, Subbiah M, Kaplan J, Dhariwal P, et al. Language models are few-shot learners [Internet]. arXiv [cs.CL]. 2020. http://arxiv.org/abs/2005.14165

  11. Human labeling [Internet]. AutoML Vision Guides. 2020 [cited 2021 Jan 13]. https://cloud.google.com/vision/automl/docs/human-labeling

  12. Automate Data Labeling [Internet]. Amazon Web Services. [cited 2021 Jan 13]. https://docs.aws.amazon.com/sagemaker/latest/dg/sms-automated-labeling.html

  13. Act A. Health insurance portability and accountability act of 1996. Public Law. 1996;104:191.

    Google Scholar 

  14. European Union. European data protection law: general data protection regulation 2016. CreateSpace Independent Publishing Platform; 2016. 130 p.

    Google Scholar 

  15. Na L, Yang C, Lo C-C, Zhao F, Fukuoka Y, Aswani A. Feasibility of reidentifying individuals in large national physical activity data sets from which protected health information has been removed with use of machine learning. JAMA Netw Open. 2018;1(8):e186040.

    Article  Google Scholar 

  16. Khan SM, Liu X, Nath S, Korot E, Faes L, Wagner SK, et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digital Health. 2021;3(1):e51–66.

    Article  Google Scholar 

  17. Truong A, Walters A, Goodsitt J, Hines K, Bruss CB, Farivar R. Towards automated machine learning: evaluation and comparison of AutoML approaches and tools. In: 2019 IEEE 31st international conference on tools with artificial intelligence (ICTAI). 2019. p. 1471–9.

    Google Scholar 

  18. Pichai S. AI first [Internet]. Google Input/Output; 2017 May 17; California. https://www.youtube.com/watch?v=CNLVZjBE08g

  19. Zoph B, Le QV. Neural architecture search with reinforcement learning [Internet]. arXiv [cs.LG]. 2016. http://arxiv.org/abs/1611.01578

  20. Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 8697–710.

    Google Scholar 

  21. Real E, Liang C, So D, Le Q. AutoML-zero: evolving machine learning algorithms from scratch. In: International conference on machine learning. PMLR; 2020. p. 8007–19.

    Google Scholar 

  22. Real E, Aggarwal A, Huang Y, Le QV. Regularized evolution for image classifier architecture search. AAAI. 2019;33(01):4780–9.

    Article  Google Scholar 

  23. Real E, Moore S, Selle A, Saxena S, Suematsu YL, Tan J, et al. Large-scale evolution of image classifiers. In: Precup D, Teh YW, editors. Proceedings of the 34th international conference on machine learning. Proceedings of machine learning research, vol. 70. International Convention Centre, Sydney: PMLR; 2017. p. 2902–11.

    Google Scholar 

  24. Goldberg DE, Deb K. A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins GJE, editor. Foundations of genetic algorithms. Elsevier; 1991. p. 69–93.

    Google Scholar 

  25. Faes L, Wagner SK, Fu DJ, Liu X, Korot E, Ledsam JR, et al. Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study. Lancet Digit Health. 2019;1(5):e232–42.

    Article  Google Scholar 

  26. Korot E, Guan Z, Ferraz D, Wagner SK, Zhang G, Liu X, et al. Code-free deep learning for multi-modality medical image classification. Nat Mach Intell. 2021;3:288.

    Article  Google Scholar 

  27. Kim IK, Lee K, Park JH, Baek J, Lee WK. Classification of pachychoroid disease on ultrawide-field indocyanine green angiography using auto-machine learning platform. Br J Ophthalmol [Internet]. 2020. https://doi.org/10.1136/bjophthalmol-2020-316108.

  28. Zeng Y, Zhang J. A machine learning model for detecting invasive ductal carcinoma with Google Cloud AutoML Vision. Comput Biol Med. 2020;122:103861.

    Article  Google Scholar 

  29. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, et al. Do no harm: a roadmap for responsible machine learning for health care. Nat Med. 2019;25(9):1337–40.

    Article  CAS  Google Scholar 

  30. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17(1):195.

    Article  Google Scholar 

  31. Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. Deep learning in neuroradiology. AJNR Am J Neuroradiol. 2018;39(10):1776–84.

    Article  CAS  Google Scholar 

  32. Arun NT, Gaw N, Singh P, Chang K, Hoebel KV, Patel J, et al. Assessing the validity of saliency maps for abnormality localization in medical imaging [Internet]. arXiv [cs.CV]. 2020. http://arxiv.org/abs/2006.00063

  33. Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. NPJ Digit Med. 2018;1:40.

    Article  Google Scholar 

  34. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115–8.

    Article  CAS  Google Scholar 

  35. Adebayo J, Gilmer J, Muelly M, Goodfellow I, Hardt M, Kim B. Sanity checks for saliency maps [Internet]. arXiv [cs.CV]. 2018. http://arxiv.org/abs/1810.03292

  36. Chen J, Ran X. Deep learning with edge computing: a review. Proc IEEE Inst Electr Electron Eng. 2019;107(8):1655–74.

    Article  Google Scholar 

  37. Merenda M, Porcaro C, Iero D. Edge machine learning for AI-enabled IoT devices: a review. Sensors [Internet]. 2020;20(9). https://doi.org/10.3390/s20092533.

  38. Bellemo V, Lim ZW, Lim G, Nguyen QD, Xie Y, Yip MYT, et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. Lancet Digit Health. 2019;1(1):e35–44.

    Article  Google Scholar 

  39. Greco L, Percannella G, Ritrovato P, Tortorella F, Vento M. Trends in IoT based solutions for health care: moving AI to the edge. Pattern Recogn Lett. 2020;135:346–53.

    Article  Google Scholar 

  40. McClellan M, Cervelló-Pastor C, Sallent S. Deep learning at the mobile edge: opportunities for 5G networks. NATO Adv Sci Inst Ser E Appl Sci. 2020;10(14):4735.

    CAS  Google Scholar 

  41. Kendall G. Apollo 11 anniversary: could an iPhone fly me to the moon. Independent. 2019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pearse A. Keane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

O’Byrne, C., Raja, L., Struyven, R., Korot, E., Keane, P.A. (2021). Automated Deep Learning for Medical Imaging. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_269-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_269-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics