Skip to main content

Artificial Intelligence in Acute Ischemic Stroke

  • Living reference work entry
  • First Online:
Book cover Artificial Intelligence in Medicine

Abstract

In recent decades, advances in image-based assessment of stroke have enabled highly effective treatments to be deployed clinically, greatly improving stroke outcomes. However, the current model of stroke care still leaves many patients without treatment for numerous reasons, including the rigid treatment time window that is often applied. Additionally, many people do not live in the range of specialist care, leaving them at greater risk of a poor outcome. Currently, artificial intelligence (AI) carries the potential to optimize stroke care by automating diagnostic processes and delivering individualized outcome predictions that can guide health care decision-making. Accordingly, there are many advances underway to implement AI into stroke care. In this chapter, a summary of AI applications to stroke medicine is presented and the challenges facing clinical deployment of AI into stroke care are discussed. Among those are data security and privacy, interpretability of algorithms, and standardization of outcome metrics. These challenges should be addressed by regulatory bodies in order to progress the field of AI in stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Berkhemer OA, Fransen PSS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of Intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372:11–20.

    Article  CAS  PubMed  Google Scholar 

  2. Saver JL, Goyal M, Bonafe A, Diener H-C, Levy EI, Pereira VM, et al. Stent-retriever Thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med. 2015;372:2285–95.

    Article  CAS  PubMed  Google Scholar 

  3. Campbell BCV, Mitchell PJ, Kleinig TJ, Dewey HM, Churilov L, Yassi N, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372:1009–18.

    Article  CAS  PubMed  Google Scholar 

  4. Jovin TG, Chamorro A, Cobo E, de Miquel MA, Molina CA, Rovira A, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med. 2015;372:2296–306.

    Article  CAS  PubMed  Google Scholar 

  5. Muir KW, Ford GA, Messow C-M, Ford I, Murray A, Clifton A, et al. Endovascular therapy for acute ischaemic stroke: the pragmatic Ischaemic stroke Thrombectomy evaluation (PISTE) randomised, controlled trial. J Neurol Neurosurg Psychiatry. 2017;88:38–44.

    Article  PubMed  Google Scholar 

  6. Bracard S, Ducrocq X, Mas JL, Soudant M, Oppenheim C, Moulin T, et al. Mechanical thrombectomy after intravenous alteplase versus alteplase alone after stroke (THRACE): a randomised controlled trial. Lancet Neurol. 2016;15:1138–47.

    Article  CAS  PubMed  Google Scholar 

  7. Röther J, Ford GA, Thijs VNS. Thrombolytics in acute Ischaemic stroke: historical perspective and future opportunities. Cerebrovasc Dis. 2013;35:313–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ma H, Campbell BCV, Parsons MW, Churilov L, Levi CR, Hsu C, et al. Thrombolysis guided by perfusion imaging up to 9 hours after onset of stroke. N Engl J Med. 2019;380:1795–803.

    Article  PubMed  Google Scholar 

  9. Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378:11–21.

    Article  PubMed  Google Scholar 

  10. Tamm A, Siddiqui M, Shuaib A, Butcher K, Jassal R, Muratoglu M, et al. Impact of stroke care unit on patient outcomes in a community hospital. Stroke. 2014;45:211–6.

    Article  PubMed  Google Scholar 

  11. Prior SJ, Reeves NS, Campbell SJ. Challenges of delivering evidence-based stroke services for rural areas in Australia. Aust J Rural Health. 2020;28:15–21.

    Article  PubMed  Google Scholar 

  12. Ali F, Hamid U, Zaidat O, Bhatti D, Kalia JS. Role of artificial intelligence in TeleStroke: an overview. Front Neurol. 2020;11:559322.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Warach S, Chien D, Li W, Ronthal M, Edelman RR. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology. 1992;42:1717.

    Article  CAS  PubMed  Google Scholar 

  14. Parmee RJ, Collins CM, Milne WI, Cole MT. X-ray generation using carbon nanotubes. Nano Convergence. 2015;2:1.

    Article  CAS  Google Scholar 

  15. Mokli Y, Pfaff J, dos Santos DP, Herweh C, Nagel S. Computer-aided imaging analysis in acute ischemic stroke – background and clinical applications. Neurol Res Pract. 2019;1:23.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goyal M, Ospel JM, Menon B, Almekhlafi M, Jayaraman M, Fiehler J, et al. Challenging the ischemic core concept in acute ischemic stroke imaging. Stroke. 2020;51:3147–55.

    Article  PubMed  Google Scholar 

  17. Wardlaw JM, Lewis SC, Dennis MS, Counsell C, McDowall M. Is visible infarction on computed tomography associated with an adverse prognosis in acute ischemic stroke? Stroke. 1998;29:1315–9.

    Article  CAS  PubMed  Google Scholar 

  18. Schirmer MD, Dalca AV, Sridharan R, Giese A-K, Donahue KL, Nardin MJ, et al. White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – the MRI-GENIE study. NeuroImage. 2019;23:101884.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rudilosso S, Laredo C, Vivancos C, Urra X, Llull L, Renú A, et al. Leukoaraiosis may confound the interpretation of CT perfusion in patients treated with mechanical Thrombectomy for acute ischemic stroke. AJNR Am J Neuroradiol. 2019;40:1323–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim W, Kanezaki A, Tanaka M. Unsupervised learning of image segmentation based on differentiable feature clustering. IEEE Trans Image Process. 2020;29:8055–68.

    Article  Google Scholar 

  21. Pinto A, Pereira S, Meier R, Wiest R, Alves V, Reyes M, et al. Combining unsupervised and supervised learning for predicting the final stroke lesion. Med Image Anal. 2021;69:101888.

    Article  PubMed  Google Scholar 

  22. Kemmling A, Flottmann F, Forkert ND, Minnerup J, Heindel W, Thomalla G, et al. Multivariate dynamic prediction of ischemic infarction and tissue salvage as a function of time and degree of recanalization. J Cereb Blood Flow Metab. 2015;35:1397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lucas C, Kemmling A, Bouteldja N, Aulmann LF, Madany Mamlouk A, Heinrich MP. Learning to predict ischemic stroke growth on acute CT perfusion data by interpolating low-dimensional shape representations. Front Neurol. 2018;9:989.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pustina D, Coslett HB, Turkeltaub PE, Tustison N, Schwartz MF, Avants B. Automated segmentation of chronic stroke lesions using LINDA: lesion identification with neighborhood data analysis: LINDA: auto-segmentation of stroke lesions. Hum Brain Mapp. 2016;37:1405–21.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maier O, Schröder C, Forkert ND, Martinetz T, Handels H. Classifiers for ischemic stroke lesion segmentation: a comparison study. Hu D, editor. PLoS ONE. 2015;10:e0145118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39:640–51.

    Article  PubMed  Google Scholar 

  27. Zeng C, Gu L, Liu Z, Zhao S. Review of deep learning approaches for the segmentation of multiple sclerosis lesions on brain MRI. Front Neuroinform. 2020;14:610967.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention – MICCAI 2015 [Internet]. Cham: Springer International Publishing; 2015. p. 234–41. [cited 2021 Mar 15]. Available from: http://link.springer.com/10.1007/978-3-319-24574-4_28.

    Chapter  Google Scholar 

  29. Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T, editors. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries: 4th international workshop, BrainLes 2018, Held in conjunction with MICCAI 2018, Granada, September 16, 2018, Revised selected papers, Part I [Internet]. Cham: Springer International Publishing; 2019. [cited 2021 Mar 16]. Available from: http://link.springer.com/10.1007/978-3-030-11723-8

    Google Scholar 

  30. Patel A, Schreuder FHBM, Klijn CJM, Prokop M, van Ginneken B, Marquering HA, et al. Intracerebral haemorrhage segmentation in non-contrast CT. Sci Rep. 2019;9:17858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.

    Article  PubMed  Google Scholar 

  32. Hassan AE, Ringheanu VM, Rabah RR, Preston L, Tekle WG, Qureshi AI. Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model. Interv Neuroradiol. 2020;26:615–22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Amukotuwa SA, Straka M, Dehkharghani S, Bammer R. Fast automatic detection of large vessel occlusions on CT angiography. Stroke. 2019;50:3431–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Teal JS, Rumbaugh CL, Bergeron RT, Segall HD. Anomalies of the middle cerebral artery: accessory artery, duplication, and early bifurcation. Am J Roentgenol. 1973;118:567–75.

    Article  CAS  Google Scholar 

  35. Komiyama M, Nakajima H, Nishikawa M, Yasui T. Middle cerebral artery variations: duplicated and accessory arteries. AJNR Am J Neuroradiol. 1998;19:45–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Menezes NM, Ay H, Wang Zhu M, Lopez CJ, Singhal AB, Karonen JO, et al. The real estate factor: quantifying the impact of infarct location on stroke severity. Stroke. 2007;38:194–7.

    Article  PubMed  Google Scholar 

  37. Etherton MR, Rost NS, Wu O. Infarct topography and functional outcomes. J Cereb Blood Flow Metab. 2018;38:1517–32.

    Article  PubMed  Google Scholar 

  38. National Stroke Audit – Acute Services Report 2019. Melbourne: Stroke Foundation.

    Google Scholar 

  39. Boers AMM, Jansen IGH, Beenen LFM, Devlin TG, San Roman L, Heo JH, et al. Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials. J NeuroIntervent Surg. 2018;10:1137–42.

    Article  Google Scholar 

  40. Campbell BC, Christensen S, Tress BM, Churilov L, Desmond PM, Parsons MW, et al. Failure of collateral blood flow is associated with infarct growth in ischemic stroke. J Cereb Blood Flow Metab. 2013;33:1168–72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Robben D, Boers AMM, Marquering HA, Langezaal LLCM, Roos YBWEM, van Oostenbrugge RJ, et al. Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning. Med Image Anal. 2020;59:101589.

    Article  PubMed  Google Scholar 

  42. Somers MJ, Casal JC. Using artificial neural networks to model nonlinearity: the case of the job satisfaction – job performance relationship. Organ Res Methods. 2009;12:403–17.

    Article  Google Scholar 

  43. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86:2278–324.

    Article  Google Scholar 

  44. Crimi A, Menze B, Maier O, Reyes M, Winzeck S, Handels H, editors. Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries: second international workshop, BrainLes 2016, with the challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, October 17, 2016, Revised selected papers [Internet]. Cham: Springer International Publishing; 2016. [cited 2021 Mar 9]. Available from: http://link.springer.com/10.1007/978-3-319-55524-9

  45. Ryo M, Rillig MC. Statistically reinforced machine learning for nonlinear patterns and variable interactions. Ecosphere. 2017;8:e01976.

    Article  Google Scholar 

  46. Mitra J, Bourgeat P, Fripp J, Ghose S, Rose S, Salvado O, et al. Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage. 2014;98:324–35.

    Article  PubMed  Google Scholar 

  47. Weimar C, König IR, Kraywinkel K, Ziegler A, Diener HC. Age and National Institutes of Health stroke scale score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models. Stroke. 2004;35:158–62.

    Article  CAS  PubMed  Google Scholar 

  48. Banks JL, Marotta CA. Outcomes validity and reliability of the modified Rankin scale: implications for stroke clinical trials: a literature review and synthesis. Stroke. 2007;38:1091–6.

    Article  PubMed  Google Scholar 

  49. Li X, Pan X, Jiang C, Wu M, Liu Y, Wang F, et al. Predicting 6-month unfavorable outcome of acute ischemic stroke using machine learning. Front Neurol. 2020;11:539509.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Criminisi A, Shotton J. Regression forests. In: Criminisi A, Shotton J, editors. Decision forests for computer vision and medical image analysis [Internet]. London: Springer; 2013. p. 47–58. https://doi.org/10.1007/978-1-4471-4929-3_5.

    Chapter  Google Scholar 

  51. Hofmeister J, Bernava G, Rosi A, Vargas MI, Carrera E, Montet X, et al. Clot-based Radiomics predict a mechanical Thrombectomy strategy for successful recanalization in acute ischemic stroke. Stroke. 2020;51:2488–94.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Chung C-C, Chan L, Bamodu OA, Hong C-T, Chiu H-W. Artificial neural network based prediction of postthrombolysis intracerebral hemorrhage and death. Sci Rep. 2020;10:20501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhao H, Coote S, Easton D, Langenberg F, Stephenson M, Smith K, et al. Melbourne Mobile stroke unit and reperfusion therapy: greater clinical impact of Thrombectomy than thrombolysis. Stroke. 2020;51:922–30.

    Article  PubMed  Google Scholar 

  54. Bache KG, Grotta JC. Improving stroke treatment and outcomes with Mobile stroke units. JAMA. 2021;325:441.

    Article  PubMed  Google Scholar 

  55. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng. 2019;3:173–82.

    Article  PubMed  Google Scholar 

  56. Wilkinson J, Arnold KF, Murray EJ, van Smeden M, Carr K, Sippy R, et al. Time to reality check the promises of machine learning-powered precision medicine. Lancet Digital Health. 2020;2:e677–80.

    Article  PubMed  Google Scholar 

  57. Monteiro M, Newcombe VFJ, Mathieu F, Adatia K, Kamnitsas K, Ferrante E, et al. Multiclass semantic segmentation and quantification of traumatic brain injury lesions on head CT using deep learning: an algorithm development and multicentre validation study. Lancet Digital Health. 2020;2:e314–22.

    Article  PubMed  Google Scholar 

  58. Gupta R, Krishnam SP, Schaefer PW, Lev MH, Gonzalez RG. An East Coast perspective on artificial intelligence and machine learning. Neuroimaging Clin N Am. 2020;30:467–78.

    Article  PubMed  Google Scholar 

  59. Pesapane F, Volonté C, Codari M, Sardanelli F. Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging. 2018;9:745–53.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Qasim AB, Ezhov I, Shit S, Schoppe O, Paetzold JC, Sekuboyina A, et al. Red-GAN: attacking class imbalance via conditioned generation. Yet another medical imaging perspective. arXiv:200410734 [cs, eess] [Internet]. 2020. [cited 2021 Mar 9]; Available from: http://arxiv.org/abs/2004.10734

  61. Arnold KF, Davies V, de Kamps M, Tennant PWG, Mbotwa J, Gilthorpe MS. Reflection on modern methods: generalized linear models for prognosis and intervention—theory, practice and implications for machine learning. Int J Epidemiol. 2021;49:2074–82.

    Article  PubMed  Google Scholar 

  62. Hernán MA, Hsu J, Healy B. A second chance to get causal inference right: a classification of data science tasks. Chance. 2019;32:42–9.

    Article  Google Scholar 

  63. Char DS, Shah NH, Magnus D. Implementing machine learning in health care – addressing ethical challenges. N Engl J Med. 2018;378:981–3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freda Werdiger .

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

(MOV 659566 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Werdiger, F., Bivard, A., Parsons, M. (2021). Artificial Intelligence in Acute Ischemic Stroke. In: Lidströmer, N., Ashrafian, H. (eds) Artificial Intelligence in Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-58080-3_287-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58080-3_287-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58080-3

  • Online ISBN: 978-3-030-58080-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics