Skip to main content

Efficiency Measurement in Digitalized Work Systems of Transport Logistics

  • Chapter
  • First Online:
Digital Supply Chains and the Human Factor

Part of the book series: Lecture Notes in Logistics ((LNLO))

  • 764 Accesses

Abstract

Digitalization is a major trend and challenge in most industries and sectors of societies. Still, quantitative insights regarding the impacts of digitalization are missing. This chapter is reporting a first approach using Data Envelopment Analysis (DEA) for measuring efficiency results of digitalization steps in a retail logistics context. Aspiring to quantify the performance of professional truck drivers during a digital turnover related to mobile devices, we evaluate truck loading processes. As inputs we use loading time and costs. Outputs are load factor of units, invoice charged to shops, and the value of the damages during truck loading. The findings indicate that a change in the level of digitalization entails a loss of the efficiency level in the first instance, which can be compensated and even surpassed later. When applying linear regression analysis, we prove a low statistical linear relationship of age and efficiency plus a strong statistical linear relationship of employer size and efficiency as well as period of employment and efficiency, always regarding the changing levels of digitalization in the working system of professional truck drivers. For practitioners in retail logistics, we derive the importance of employee retention programs for human resource management, along with a positive working environment provided for truck drivers to reduce fluctuation effects. Furthermore, we advise designing software for truck drivers as commonplace as possible and in the style of widespread smartphone software user interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See Broy and Geisberger [21] and for the basic architecture of CPS systems, see [64, 65, 76, 82].

  2. 2.

    The basic idea of this concept is the existence of several objects that are able to interact and communicate with each other, see [11]. For basic literature regarding the IoT [3, 41, 75, 107].

  3. 3.

    The umbrella concept AI contains an intelligence created by human skills and was first-ly named by McCarthy et al. [74]. A wide range of existing definitions can be categorized in four main approaches [85] (1) thinking humanly [43], (2) acting humanly [61], (3) thinking rationally [24] and (4) acting rationally [81].

  4. 4.

    See Kagermann et al. [51, 52], Forschungsunion [37, 38], Forschungsunion and Acatech [39]. Industry 4.0 is also mentioned as “Industrialization of a new type”, see [18], as “Second Machine Age” see [22], as “Third Industrial Revolution”, see [72, 84] and as “Distributed Capitalism”, see [110].

  5. 5.

    See [40, 50, 68, 78, 87, 94, 103].

  6. 6.

    The concept drafts of Retail 4.0 are e.g. anticipatory shipping through big data analytics see Lee [63] and consumer's purchase prediction [14, 73].

  7. 7.

    In the original version “…for use in evaluating activities of not-for-profit entities participating in public programs”; Charnes et al. [23, p. 429].

  8. 8.

    The bibliography of Tavares lists with 3.203 analyzed publications of 2.152 authors from 49 countries a comprehensive overview of publications on the topic of the DEA, see [96].

  9. 9.

    For an overview see [83].

References

  1. Ahrens D (2016) Neue Anforderungen im Zuge der Automatisierung von Produktionsprozessen: Expertenwissen und operative Zuverlässigkeit. Arbeits und Industriesoziologische Studien 9:43–56

    Google Scholar 

  2. Aigner D, Lovell K, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econ 6:21–37. https://doi.org/10.1016/0304-4076(77)90052-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Al-Fuqaha A, Guizani M, Mohammadi M, Aledhari M, Ayyash M (2015) Internet of things: a survey on enabling technologies, protocols and applications. IEEE Commun Surv Tutor 17:2347–2376. https://doi.org/10.1109/COMST.2015.2444095

    Article  Google Scholar 

  4. Alter S (1995) How should business professionals analyze information systems for themselves. In: Working conference on basic information system concepts, pp 284–299

    Google Scholar 

  5. Alter S (1999) A general, yet useful theory of information systems. Commun Assoc Inf Syst 1:1–70

    Google Scholar 

  6. Alter S (2000) Same words, different meanings: are basic IS/IT concepts our self-imposed tower of babel. Commun Assoc Inf Syst 3:1–87

    Google Scholar 

  7. Alter S (2008a) Defining information systems as work systems: implications for the IS field. Euro J Inf Syst 17:448–469

    Article  Google Scholar 

  8. Alter S (2008b) Service system fundamentals: work system, value chain, and life cycle. IBM Syst J 47:71–85

    Article  Google Scholar 

  9. Alter S (2009) Bridging the chasm between socio-technical and technical views of systems in organizations. In: Working papers on information systems, vol 9

    Google Scholar 

  10. Alter S (2013) Work system theory: overview of core concepts, extensions, and challenges for the future. J Assoc Inf Syst 14:72–121

    Google Scholar 

  11. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw 54:2787–2805. https://doi.org/10.1016/j.comnet.2010.05.010

    Article  MATH  Google Scholar 

  12. Avent R (2014) The third great wave. The Economist, Special Report, pp 1–14

    Google Scholar 

  13. Azadeh A, Mousavi A (2014) The impact of job security, satisfaction and stress on performance assessment and optimization of generation companies. J Loss Prev Process Ind 32:343–348

    Article  Google Scholar 

  14. Bag S, Tiwari MK, Chan FTS (2019) Predicting the consumer’s purchase intention of durable goods: an attribute-level analysis. J Business Res 94:408–419. https://doi.org/10.1016/j.jbusres.2017.11.031

    Article  Google Scholar 

  15. Banker RD, Charnes A, Cooper WW (1984) Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage Sci 30:1078–1092

    Article  MATH  Google Scholar 

  16. Bauer W, Schlund S (2015) Change of work in indirect areas: planning and engineering. In: Hirsch-Kreinsen H, Ittermann P, Niehaus J (eds) Digitalisierung industrieller Arbeit: Die Version Industrie 4.0 und ihre sozialen Herausforderungen, 1st ed. Baden-Baden: Nomos Verlagsgesellschaft, pp 54–69

    Google Scholar 

  17. Bayraktar E, Tatoglu E, Turkyilmaz A, Delen D, Zaim S (2012) Measuring the efficiency of customer satisfaction and loyalty for mobile phone brands with DEA. Expert Syst Appl 39:99–106. https://doi.org/10.1016/j.eswa.2011.06.041

    Article  Google Scholar 

  18. Boes A, Kämpf T, Lühr T, Marrs K (2014) Kopfarbeit in der modernen Arbeitswelt: Auf dem Weg zu einer Industrialisierung neuen Typs. In: Sydow J, Sadowski D, Conrad P (eds) Arbeit—eine Neubestimmung: Managementforschung 24. Gabler, Wiesbaden, pp 33–42

    Chapter  Google Scholar 

  19. Bogner DP (2017) Die Feldtheorie Kurt Lewins: Eine vergessene Metatheorie für die Erziehungswissenschaft. Springer Fachmedien, Wiesbaden

    Book  Google Scholar 

  20. Bowen WM (1990) Subjective judgements and data envelopment analysis in site selection. Comput Environ Urban Syst 14:133–144. https://doi.org/10.1016/0198-9715(90)90018-O

    Article  Google Scholar 

  21. Broy M, Geisberger E (2012) AgendaCPS: Integrierte Forschungsagenda Cyber-Physical Systems. Acatech-Studie. Springer, Berlin, Heidelberg

    Google Scholar 

  22. Brynjolfsson E, McAfee A (2014) The second machine age: work, progress, and prosperity in a time of brilliant technologies. W.W. Norton & Company, New York

    Google Scholar 

  23. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444. https://doi.org/10.1016/0377-2217(78)90138-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Charniak E, McDermott D (1985) Introduction to artificial intelligence. World student series edition. Reading: Addison-Wesley

    Google Scholar 

  25. Chen Z, Matousek R, Wanke P (2018) Chinese bank efficiency during the global financial crisis: a combined approach using satisficing DEA and support vector machines. North Am J Econ Fin 43:71–86

    Article  Google Scholar 

  26. Chen Z, Wanke P, Antunes JJM, Zhang N (2017) Chinese airline efficiency under CO2 emissions and flight delays: a stochastic network DEA model. Energy Econ 68:89–108. https://doi.org/10.1016/j.eneco.2017.09.015

    Article  Google Scholar 

  27. Chilingerian JA, Sherman DH (1990) Managing physician efficiency and effectiveness in providing hospital services. Health Serv Manage Res 3:3–15. https://doi.org/10.1177/095148489000300101

    Article  Google Scholar 

  28. Cooper WW, Seiford LM, Zhu J (eds) (2011) Handbook on data envelopment analysis. Springer, Boston

    Google Scholar 

  29. Cooper WW, Seiford LM, Tone K (2007) Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. Springer, Boston

    MATH  Google Scholar 

  30. Debreu G (1951) The coefficient of resource utilization. Econometrica 19:273–292. https://doi.org/10.2307/1906814

    Article  MATH  Google Scholar 

  31. DIN EN ISO 9000 (2000) Qualitätsmanagementsysteme: Grundlagen und Begriffe. Beuth, Berlin

    Google Scholar 

  32. Dombrowski U, Riechel C, Evers M (2014) Industry 4.0: the role of humans in the fourth industrial revolution. In: Kersten W (ed) Industrie 4.0: Wie intelligente Vernetzung und kognitive Systeme unsere Arbeit verändern. Gito, Berlin, pp 129–153

    Google Scholar 

  33. Du J-Y (2013) Staff performance appraisal based on data envelopment analysis. J Chem Pharm Res 5:102–105. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890951264&partnerID=40&md5=7f54fe02057fd69c177250ac8a7b7d17

  34. Dugelova M, Strenitzerova M (2015) The using of data envelopment analysis in human resource controlling. Proc Econ Fin 26:468–475. https://doi.org/10.1016/S2212-5671(15)00875-8

    Article  Google Scholar 

  35. Eisenmann M, Ittermann P (2017) Hybrid services and change of work: challenges and perspectives in logistics. Soziologisches Arbeitspapier 50:1–46

    Google Scholar 

  36. Farrell MJ (1957) The measurement of productive efficiency. J R Stat Soc 120:253–290

    Google Scholar 

  37. Forschungsunion (2012a) Im Fokus: Das Zukunftsprojekt Industrie 4.0: Handlungsempfehlungen zur Umsetzung. Berlin

    Google Scholar 

  38. Forschungsunion (2012b) Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0: Abschlussbericht des Arbeitskreises Industrie 4.0. Berlin

    Google Scholar 

  39. Forschungsunion and Acatech (2013) Deutschlands Zukunft als Produktionsstandort sichern: Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0. Frankfurt: Abschlussbericht des Arbeitskreises Industrie 4.0

    Google Scholar 

  40. Glistau E, Machado NIC (2018) Industry 4.0, logistics 4.0 and materials—chances and solutions. Mater Sci Forum 919:307–314. https://doi.org/10.4028/www.scientific.net/MSF.919.307

    Article  Google Scholar 

  41. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things: a vision, architectural elements and future directions. Future Gener Comput Syst 29:1645–1660. https://doi.org/10.1016/j.future.2013.01.010

    Article  Google Scholar 

  42. Hardenacke H, Peetz W, Wichardt G (1985) Work science. Studienbücher der Wirtschaft. Hanser, München

    Google Scholar 

  43. Haugeland J (1985) Artificial intelligence: the very idea, vol 151. MIT Press, Cambridge

    Google Scholar 

  44. Helfrich H (2015) Wissenschaftstheorie im betriebswirtschaftlichen Studium. Springer, Wiesbaden

    Google Scholar 

  45. Hirsch-Kreinsen H (2015) Gestaltungsperspektiven von Produktionsarbeit bei Industrie 4.0. In: Schlick C (ed) Arbeit in der digitalisierten Welt: Beiträge der Fachtagung des BMBF 2015, 1st ed. Frankfurt am Main: Campus

    Google Scholar 

  46. Hirsch-Kreinsen H, ten Hompel M, Ittermann P, Dregger J, Niehaus J, Kirks T, Mättig B (2018) Social manufacturing and logistics: Arbeit in der digitalisierten Produktion. In: Wischmann S, Hartmann E (eds) Zukunft der Arbeit: Eine praxisnahe Betrachtung. Springer Vieweg, Berlin

    Google Scholar 

  47. Hong S, Ahmad A (2016) An explanatory review of mandatory task. In: 2nd international symposium on agent, multi-agent systems and robotics, pp 51–56. Retrieved from https://ieeexplore.ieee.org/abstract/document/7810002/

  48. Huang T-H, Chen K-C, Lin C-I (2018) An extension from network DEA to copula-based network SFA: evidence from the U.S. commercial banks in 2009. Quart Rev Econ Fin 67:51–62

    Article  Google Scholar 

  49. Huchler N (2016) The ‘role of humans’ in Industry 4.0: technically centered versus human-centered approach. Arbeits-Und Industriesoziologische Studien 9:57–79

    Google Scholar 

  50. Jacintho JC, Da Silva MT, Do Nascimento RJ, Poveda PF, Cevoli TN, Ribeiro VH (2018) Ethanol loading and dispatch operation: a discussion on management practices and logistics 4.0. In: ILS 2018—information systems, logistics and supply chain, proceedings. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85050973246&partnerID=40&md5=8904e770e1c7a38c26b1f834e281f8e4

  51. Kagermann H, Lukas W-D, Wahlster W (2011) Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen revolution. VDI Nachrichten, 13

    Google Scholar 

  52. Kagermann H, Wahlster W, Helbig J (2013) Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0: Abschlussbericht des Arbeitskreises Industrie 4.0. Frankfurt.

    Google Scholar 

  53. Kerpen P (2016) Praxisorientierte data envelopment analysis. Gabler, Wiesbaden

    Book  Google Scholar 

  54. Khodamoradi M, Behzadi M-H, Rostamy-MaleKhalifeh M (2016) Evaluating of staff’s performance with job satisfaction and organizational commitment approach by DEA: case study: Khuzestan oxin steel company. Int J Data Envel Anal 4:945–949

    Google Scholar 

  55. Klumpp M (2017) Analyse und Modellierung von Wertschöpfungsfunktionen für Hochschulen. In: Zelewski S, Klumpp M, Akca N (eds) Hochschuleffizienz: Konzeptionelle Herausforderungen und Lösungsansätze aus Sicht der betriebswirtschaftlichen Forschung. Logos Berlin, Berlin, pp 125–138

    Google Scholar 

  56. Klumpp M (2018) Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. Int J Logist Res Appl 21:224–242. https://doi.org/10.1080/13675567.2017.1384451

    Article  Google Scholar 

  57. Klumpp M, Ruiner C (2018) Digitalization and work organization in new urban food delivery systems, pp 301–312. https://doi.org/10.18461/pfsd.2018.1823

  58. Koch V, Geissbauer R, Kuge S, Schrauf S (2014) Chancen und Herausforderungen der vierten industriellen revolution. Pwc und Strategy, Frankfurt, München

    Google Scholar 

  59. Koopmans TC (1951) An analysis of production as an efficient combination of activities. In: Koopmans TC (ed) Activity analysis of production and allocation: proceeding of a conference. Wiley, London, pp 33–97

    Google Scholar 

  60. Kotter JP (1995) Leading change: why transformation efforts fail. Harvard Business Rev 73:59–67

    Google Scholar 

  61. Kurzweil R (1990) The age of intelligent machines. MIT Press, Cambridge

    Google Scholar 

  62. Lee B, Worthington AC (2016) A network DEA quantity and quality-orientated production model: an application to Australian university research services. Omega 60:26–33. https://doi.org/10.1016/j.omega.2015.05.014

    Article  Google Scholar 

  63. Lee CKH (2017) A GA-based optimisation model for big data analytics supporting anticipatory shipping in Retail 4.0. Int J Prod Res 55:593–605

    Article  Google Scholar 

  64. Lee E (2008) Cyber physical systems: design challenges. In: 11th IEEE symposium on object/component/service-oriented real-time distributed computing. Advance online publication. https://doi.org/10.1109/ISORC.2008.25

  65. Lee J, Bagheri B, Kao H-A (2015) A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf Lett 3:18–23. https://doi.org/10.1016/j.mfglet.2014.12.001

    Article  Google Scholar 

  66. Lewin K (1947) Frontiers in group dynamics. Human Relat 1:5–41. https://doi.org/10.1177/001872674700100103

    Article  Google Scholar 

  67. Lewin K (1963) Field theory in the social sciences: selected theoretical publications. Huber, Bern

    Google Scholar 

  68. Loureiro RJP, Simões JMM, Cartaxo JV, Amorim MPC, Costa C, Au-Yong-Oliveira M, Amorim MPC (2018) Costs of transaction in logistics 4.0 and influence of innovation networks. In: Proceedings of the European conference on innovation and entrepreneurship, ECIE, 2018-September. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055425695&partnerID=40&md5=6a62298267d278d484f0fe1dd4edb671

  69. Luczak H (1997) Core definition and systematics of work science. In: Luczak H, Volpert W, Müller T (eds) Handbook work science. Schäffer-Poeschel, Stuttgart, pp 11–19

    Google Scholar 

  70. Malhotra R, Malhotra D (2007) Using data envelopment analysis to analyze European union nations. J Int Business 2:24–39

    Google Scholar 

  71. Malhotra R, Malhotra D (2009) Evaluating the efficiency of European Union integration. Int J Commerce Manage 19:233–252. https://doi.org/10.1108/10569210910988001

    Article  Google Scholar 

  72. Markillie P (2012) A third industrial revolution. The Economist, Special Report, pp 1–10

    Google Scholar 

  73. Martínez A, Schmuck C, Pereverzyev S, Pirker C, Haltmeier M (2018) A machine learning framework for customer purchase prediction in the non-contractual setting. Euro J Oper Res. Advance online publication. https://doi.org/10.1016/j.ejor.2018.04.034

  74. McCarthy J, Minsky ML, Rochester N, Shannon CE (2006) A Proposal for the dartmouth summer research project on artificial intelligence. AI Magazine 27:12–14

    Google Scholar 

  75. Miorandi D, Sicari S, de Pellegrini F, Chlamtac I (2012) Internet of things: vision, applications and research challenges. Ad Hoc Netw 10:1497–1516. https://doi.org/10.1016/j.adhoc.2012.02.016

    Article  Google Scholar 

  76. Mo Y, Kim TH-J, Brancik K, Dickinson D, Lee H, Perrig A, Sinopoli B (2012) Cyber-physical security of a smart grid infrastructure. Proc IEEE 100:195–209. https://doi.org/10.1109/JPROC.2011.2161428

    Article  Google Scholar 

  77. Momeni E, Azadi M, Saen RF (2015) Measuring the efficiency of third party reverse logistics provider in supply chain by multi objective additive network DEA model. Int J Ship Transp Logist 7:21–41. https://doi.org/10.1504/IJSTL.2015.065898

    Article  Google Scholar 

  78. Oleśków-Szłapka J, Stachowiak A, Burduk A, Chlebus E, Nowakowski T, Tubis A (2019) The framework of logistics 4.0 maturity model. Adv Intel Syst Comput 835:771–781. https://doi.org/10.1007/978-3-319-97490-3_73

    Article  Google Scholar 

  79. Omrani H, Soltanzadeh E (2016) Dynamic DEA models with network structure: an application for Iranian airlines. J Air Transp Manage 57:52–61. https://doi.org/10.1016/j.jairtraman.2016.07.014

    Article  Google Scholar 

  80. Peters ML (2017) Grundlagen der data envelopment analysis. In: Zelewski S, Klumpp M, Akca N (eds) Hochschuleffizienz: Konzeptionelle Herausforderungen und Lösungsansätze aus Sicht der betriebswirtschaftlichen Forschung. Logos Berlin, Berlin, pp 37–123

    Google Scholar 

  81. Poole DL, Mackworth AK, Goebel RG (1998) Computational intelligence: a logical approach. Oxford Univ. Press, New York

    MATH  Google Scholar 

  82. Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber-physical systems: the next computing revolution. In: 1st design automation conference. Advance online publication. https://doi.org/10.1145/1837274.1837461

  83. Richter M (2017) Time and quality efficiency of Scotch single malt whisky production: an empirical two-model DEA approach. Ilmenauer Schriften Zur Betriebswirtschaftslehre 2:1–21

    Google Scholar 

  84. Rifkin J (2011) The third industrial revolution: how lateral power is transforming energy, the economy and the world. Palgrave Macmillan, New York

    Google Scholar 

  85. Russell SJ, Norvig P (2010) Artificial intelligence: a modern approach, 3rd edn. Prentice Hall, New Jersey

    MATH  Google Scholar 

  86. Scheel H (2000) Effizienzmaße der data envelopment analysis. Deutscher Universitätsverlag, Wiesbaden

    Book  Google Scholar 

  87. Schmidtke N, Behrendt F, Thater L, Meixner S (2018) Technical potentials and challenges within internal logistics 4.0. In: Proceedings—GOL 2018: 4th IEEE international conference on logistics operations management. Advance online publication. https://doi.org/10.1109/GOL.2018.8378072

  88. Schultetus W (2006) Work science from theory to practice: work science findings and their economic benefits. Wirtschaftsverlag, Köln

    Google Scholar 

  89. See B von, Kersten W (2018) Arbeiten im Zeitalter des Internets der Dinge. Industrie 4.0 Manage 34:8–12. https://doi.org/10.30844/IM18-3_8-12

  90. Sherman DH, Zhu J (2006) Benchmarking with quality-adjusted DEA (Q-DEA) to seek lower-cost high-quality service: evidence from a U.S. bank application. Ann Oper Res 145:301–319. https://doi.org/10.1007/s10479-006-0037-4

    Article  MATH  Google Scholar 

  91. Shirouyehzad H, Hosseinzadeh LF, Aryanezhad MB, Dabestani R (2012) A Data envelopment analysis approach for measuring efficiency of employees: a case study. South African J Industr Eng 23:191–201. https://doi.org/10.7166/23-1-230

    Article  Google Scholar 

  92. Stepan A, Fischer EO (2009) Betriebswirtschaftliche Optimierung (8th ed). Lehr-und Handbücher zur entscheidungsorientierten Betriebswirtschaft. Wissenschaftsverlag, Oldenbourg

    Google Scholar 

  93. Stowasser S, Jeske T (2015) Arbeitswelt der Zukunft. In: Schlick C (ed) Arbeit in der digitalisierten Welt: Beiträge der Fachtagung des BMBF 2015, 1st ed. Frankfurt am Main: Campus

    Google Scholar 

  94. Strandhagen JO, Vallandingham LR, Fragapane G, Strandhagen JW, Stangeland ABH, Sharma N (2017) Logistics 4.0 and emerging sustainable business models. Adv Manuf 5:359–369. https://doi.org/10.1007/s40436-017-0198-1

    Article  Google Scholar 

  95. Tang L, Huang X, Peng Y, Xiao Z (2015) Analysis and evaluation of relative efficiency of warehousing and distribution operations based on mixed DEA model. Chem Eng Trans 46:583–588

    Google Scholar 

  96. Tavares G (2002) A bibliography of data envelopment analysis: Rutcor research report 1978–2001. Piscataway, Rutgers Center for Operations Research

    Google Scholar 

  97. Vahs D, Weiand A (2010) Workbook change-management: methods and techniques. Schäffer-Poeschel, Stuttgart

    Google Scholar 

  98. Van Eck NJ, Waltman L (2010) Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523–538

    Article  Google Scholar 

  99. Wee D, Kelly R, Cattel J, Breunig M (2015) Industry 4.0: How to navigate digitization of the manufacturing sector. München, Stamford, Tokyo, McKinsey & Company, Hamburg

    Google Scholar 

  100. Wilken R (2007) Dynamisches benchmarking: ein verfahren auf basis der data envelopment analysis. Deutscher Universitätsverlag, Wiesbaden

    Google Scholar 

  101. Will-Zocholl M (2016) Die Verlockung des Virtuellen: Reorganisation von Arbeit unter Bedingungen der Informatisierung, Digitalisierung und Virtualisierung. Arbeits-Und Industriesoziologische Studien 9:25–42

    Google Scholar 

  102. Windelband L, Dworschak B (2015) Arbeit und Kompetenzen in der Industrie 4.0: Anwendungsszenarien Instandhaltung und Leichtbaurobotik. In: Hirsch-Kreinsen H, Ittermann P, Niehaus J (eds) Digitalisierung industrieller Arbeit: Die Version Industrie 4.0 und ihre sozialen Herausforderungen, 1st ed. Baden-Baden: Nomos Verlagsgesellschaft, pp 71–86

    Google Scholar 

  103. Wrobel-Lachowska M, Wisniewski Z, Polak-Sopinska A, Andre T (2018) The role of the lifelong learning in logistics 4.0. Adv Intel Syst Comput 596:402–409. https://doi.org/10.1007/978-3-319-60018-5_39

    Article  Google Scholar 

  104. Wróbel-Lachowska M, Wisniewski Z, Polak-Sopińska A (2018) The role of the lifelong learning in logistics 4.0. In: international conference on applied human factors and ergonomics, pp 402–409

    Google Scholar 

  105. Yang G-L, Fukuyama H, Song Y-Y (2018) Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model. J Informetr 12:10–30. https://doi.org/10.1016/j.joi.2017.11.002

    Article  Google Scholar 

  106. Ye YY (2015) Performance evaluation of logistics enterprise based on DEA model. Int J Serv Technol Manage 21:137–141. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84957359142&partnerID=40&md5=f7db5d3faecde37cca6e57586b99527c

  107. Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things for smart cities. IEEE IoT J 1:22–32. https://doi.org/10.1109/JIOT.2014.2306328

    Article  Google Scholar 

  108. Zbranek P (2013) Data envelopment analysis as a tool for evaluation of employees’ performance. Acta Oeconomica Et Informatica 16:12–21

    Google Scholar 

  109. Zervopoulos P, Palaskas T (2011) Applying quality-driven, efficiency-adjusted DEA (QE-DEA) in the pursuit of high-efficiency–high-quality service units: an input-oriented approach. J Manage Math 22:401–417. https://doi.org/10.1093/imaman/dpr014

    Article  MathSciNet  Google Scholar 

  110. Zuboff S (2010). Creating value in the age of distributed capitalism. McKinsey Quarterly

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Loske .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loske, D., Klumpp, M. (2021). Efficiency Measurement in Digitalized Work Systems of Transport Logistics. In: Klumpp, M., Ruiner, C. (eds) Digital Supply Chains and the Human Factor. Lecture Notes in Logistics. Springer, Cham. https://doi.org/10.1007/978-3-030-58430-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58430-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58429-0

  • Online ISBN: 978-3-030-58430-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics