Skip to main content

MotionSqueeze: Neural Motion Feature Learning for Video Understanding

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12361))

Included in the following conference series:

Abstract

Motion plays a crucial role in understanding videos and most state-of-the-art neural models for video classification incorporate motion information typically using optical flows extracted by a separate off-the-shelf method. As the frame-by-frame optical flows require heavy computation, incorporating motion information has remained a major computational bottleneck for video understanding. In this work, we replace external and heavy computation of optical flows with internal and light-weight learning of motion features. We propose a trainable neural module, dubbed MotionSqueeze, for effective motion feature extraction. Inserted in the middle of any neural network, it learns to establish correspondences across frames and convert them into motion features, which are readily fed to the next downstream layer for better prediction. We demonstrate that the proposed method provides a significant gain on four standard benchmarks for action recognition with only a small amount of additional cost, outperforming the state of the art on Something-Something-V1 & V2 datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision (IJCV) 92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  3. Chen, Y., Kalantidis, Y., Li, J., Yan, S., Feng, J.: Multi-fiber networks for video recognition. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  4. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  5. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  6. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  7. Fan, L., Huang, W., Gan, C., Ermon, S., Gong, B., Huang, J.: End-to-end learning of motion representation for video understanding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  8. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for video action recognition. In: Proceedings of Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  9. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  10. Goyal, R., et al.: The "something something" video database for learning and evaluating visual common sense. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  11. Han, K., et al.: Scnet: learning semantic correspondence. In: Proceeding of IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  13. Honari, S., Molchanov, P., Tyree, S., Vincent, P., Pal, C., Kautz, J.: Improving landmark localization with semi-supervised learning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  14. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861

  15. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015). arXiv preprint arXiv:1502.03167

  16. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: Stm: spatiotemporal and motion encoding for action recognition. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  17. Kay, W., et al.: The kinetics human action video dataset (2017). arXiv preprint arXiv:1705.06950

  18. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  19. Lee, J., Kim, D., Ponce, J., Ham, B.: SFNET: learning object-aware semantic correspondence. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  20. Lee, M., Lee, S., Son, S., Park, G., Kwak, N.: Motion feature network: fixed motion filter for action recognition. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  21. Lin, J., Gan, C., Han, S.: Tsm: temporal shift module for efficient video understanding. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  22. Liu, X., Lee, J.Y., Jin, H.: Learning video representations from correspondence proposals. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  23. Martinez, B., Modolo, D., Xiong, Y., Tighe, J.: Action recognition with spatial-temporal discriminative filter banks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  24. Min, J., Lee, J., Ponce, J., Cho, M.: Hyperpixel flow: semantic correspondence with multi-layer neural features. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  25. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of International Conference on Machine Learning (ICML) (2010)

    Google Scholar 

  26. Ng, J.Y.H., Choi, J., Neumann, J., Davis, L.S.: Actionflownet: learning motion representation for action recognition. In: Proceedings of Winter Conference on Applications of Computer Vision (WACV) (2018)

    Google Scholar 

  27. Piergiovanni, A., Ryoo, M.S.: Representation flow for action recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  28. Rocco, I., Arandjelovic, R., Sivic, J.: Convolutional neural network architecture for geometric matching. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  29. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  30. Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M.J.: On the integration of optical flow and action recognition. In: Proceedings of German Conference on Pattern Recognition (GCPR) (2018)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Proceedings of Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  32. Stroud, J., Ross, D., Sun, C., Deng, J., Sukthankar, R.: D3D: distilled 3D networks for video action recognition. In: Proceedings of Winter Conference on Applications of Computer Vision (WACV) (2020)

    Google Scholar 

  33. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  34. Sun, S., Kuang, Z., Sheng, L., Ouyang, W., Zhang, W.: Optical flow guided feature: a fast and robust motion representation for video action recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  35. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  36. Tran, D., Wang, H., Torresani, L., Feiszli, M.: Video classification with channel-separated convolutional networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  37. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  38. Wang, H., Kläser, A., Schmid, C., Cheng-Lin, L.: Action recognition by dense trajectories. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  39. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-convolutional descriptors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  40. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Proceedings of European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  41. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  42. Wang, X., Gupta, A.: Videos as space-time region graphs. In: Proceedings of European Conference on Computer Vision (ECCV), pp. 399–417 (2018)

    Google Scholar 

  43. Xie, S., Sun, C., Huang, J., Tu, Z., Murphy, K.: rethinking spatiotemporal feature learning: speed-accuracy trade-offs in video classification. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  44. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l 1 optical flow. In: Hamprecht, Fred A., Schnörr, Christoph, Jähne, Bernd (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74936-3_22

    Chapter  Google Scholar 

  45. Zhao, Y., Xiong, Y., Lin, D.: Recognize actions by disentangling components of dynamics. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  46. Zhao, Y., Xiong, Y., Lin, D.: Trajectory convolution for action recognition. In: Proceedings of Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  47. Zhou, B., Andonian, A., Oliva, A., Torralba, A.: Temporal relational reasoning in videos. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  48. Zolfaghari, M., Singh, K., Brox, T.: Eco: efficient convolutional network for online video understanding. In: Proceedings of European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Samsung Advanced Institute of Technology (SAIT), and also by Basic Science Research Program (NRF-2017R1E1A1A010 77999, NRF-2018R1C1B6001223) and Next-Generation Information Computing Development Program (NRF-2017M3C4A7069369) through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minsu Cho .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13642 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kwon, H., Kim, M., Kwak, S., Cho, M. (2020). MotionSqueeze: Neural Motion Feature Learning for Video Understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12361. Springer, Cham. https://doi.org/10.1007/978-3-030-58517-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58517-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58516-7

  • Online ISBN: 978-3-030-58517-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics