Skip to main content

Seeing the Un-Scene: Learning Amodal Semantic Maps for Room Navigation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12363))

Included in the following conference series:

Abstract

We introduce a learning-based approach for room navigation using semantic maps. Our proposed architecture learns to predict top-down belief maps of regions that lie beyond the agent’s field of view while modeling architectural and stylistic regularities in houses. First, we train a model to generate amodal semantic top-down maps indicating beliefs of location, size, and shape of rooms by learning the underlying architectural patterns in houses. Next, we use these maps to predict a point that lies in the target room and train a policy to navigate to the point. We empirically demonstrate that by predicting semantic maps, the model learns common correlations found in houses and generalizes to novel environments. We also demonstrate that reducing the task of room navigation to point navigation improves the performance further.

M. Narasimhan—Work done while an intern at Facebook AI Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We acknowledge that these regularities likely vary across geographies and cultures.

References

  1. Anderson, P., et al.: On evaluation of embodied navigation agents. arXiv preprint arXiv:1807.06757 (2018)

  2. Anderson, P., et al.: Vision-and-language navigation: interpreting visually-grounded navigation instructions in real environments. In: CVPR (2018)

    Google Scholar 

  3. Aydemir, A., Göbelbecker, M., Pronobis, A., Sjöö, K., Jensfelt, P.: Plan-based object search and exploration using semantic spatial knowledge in the real world. In: ECMR (2011)

    Google Scholar 

  4. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM) Part ii. IEEE Robot. Autom. Mag. 13, 99–110 (2006)

    Article  Google Scholar 

  5. Bengio, S., Vinyals, O., Jaitly, N., Shazeer, N.: Scheduled sampling for sequence prediction with recurrent neural networks. In: Advances in Neural Information Processing Systems (NeurIPS)

    Google Scholar 

  6. Bowman, S.L., Atanasov, N., Daniilidis, K., Pappas, G.J.: Probabilistic data association for semantic slam. In: International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  7. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32, 1309–1332 (2016)

    Article  Google Scholar 

  8. Carlone, L., Du, J., Kaouk Ng, M., Bona, B., Indri, M.: Active SLAM and exploration with particle filters using Kullback-Leibler divergence. J. Intell. Robot. Syst. 75(2), 291–311 (2013). https://doi.org/10.1007/s10846-013-9981-9

    Article  Google Scholar 

  9. Chang, A., et al.: Matterport3D: Learning from RGB-D data in indoor environments. arXiv preprint arXiv:1709.06158 (2017). matterport3D dataset available at https://niessner.github.io/Matterport/

  10. Chen, T., Gupta, S., Gupta, A.: Learning exploration policies for navigation. arXiv preprint arXiv:1903.01959 (2019)

  11. Crespo, J., Castillo, J.C., Mozos, O.M., Barber, R.: Semantic information for robot navigation: a survey. Appl. Sci. 10, 497 (2020)

    Article  Google Scholar 

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  13. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part i. IEEE Robot. Autom. Mag. 13, 99–110 (2006)

    Article  Google Scholar 

  14. Fang, K., Toshev, A., Fei-Fei, L., Savarese, S.: Scene memory transformer for embodied agents in long-horizon tasks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  15. Fried, D., et al.: Speaker-follower models for vision-and-language navigation. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  16. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43(1), 55–81 (2012). https://doi.org/10.1007/s10462-012-9365-8

    Article  Google Scholar 

  17. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping and planning for visual navigation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision (2003)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  20. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Kollar, T., Roy, N.: Trajectory optimization using reinforcement learning for map exploration. Int. J. Robot. Res. 27, 175–196 (2008)

    Article  Google Scholar 

  24. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. 123(1), 32–73 (2017). https://doi.org/10.1007/s11263-016-0981-7

    Article  MathSciNet  Google Scholar 

  25. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  26. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  27. Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., Doucet, A.: A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Auton. Robots 27, 93–103 (2009). https://doi.org/10.1007/s10514-009-9130-2

    Article  Google Scholar 

  28. Mirowski, P., et al.: Learning to navigate in complex environments. arXiv preprint arXiv:1611.03673 (2016)

  29. Pronobis, A., Jensfelt, P.: Large-scale semantic mapping and reasoning with heterogeneous modalities. In: International Conference on Robotics and Automation (ICRA) (2012)

    Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Savinov, N., Dosovitskiy, A., Koltun, V.: Semi-parametric topological memory for navigation. arXiv preprint arXiv:1803.00653 (2018)

  32. Savva, M., et al.: Habitat: A platform for embodied AI research. arXiv preprint arXiv:1904.01201 (2019)

  33. Schulman, J., Moritz, P., Levine, S., Jordan, M., Abbeel, P.: High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015)

  34. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017)

  35. Stachniss, C., Grisetti, G., Burgard, W.: Information gain-based exploration using Rao-Blackwellized particle filters. In: Robotics: Science and Systems (2005)

    Google Scholar 

  36. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  37. Walter, M.R., Hemachandra, S., Homberg, B., Tellex, S., Teller, S.: Learning semantic maps from natural language descriptions. In: Robotics: Science and Systems (2013)

    Google Scholar 

  38. Wang, X., et al.: Reinforced cross-modal matching and self-supervised imitation learning for vision-language navigation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  39. Wang, X., Xiong, W., Wang, H., Wang, W.Y.: Look before you leap: bridging model-free and model-based reinforcement learning for planned-ahead vision-and-language navigation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 38–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_3

    Chapter  Google Scholar 

  40. Wang, Z., Zhang, Q., Li, J., Zhang, S., Liu, J.: A computationally efficient semantic SLAM solution for dynamic scenes. Remote Sens. 11, 1363 (2019)

    Article  Google Scholar 

  41. Wijmans, E., et al.: DD-PPO: learning near-perfect pointgoal navigators from 2.5 billion frames. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  42. Wu, Y., Wu, Y., Gkioxari, G., Tian, Y.: Building generalizable agents with a realistic and rich 3D environment. arXiv preprint arXiv:1801.02209 (2018)

  43. Wu, Y., Wu, Y., Tamar, A., Russell, S., Gkioxari, G., Tian, Y.: Bayesian relational memory for semantic visual navigation. arXiv preprint arXiv:1909.04306 (2019)

  44. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  45. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  46. Yang, W., Wang, X., Farhadi, A., Gupta, A., Mottaghi, R.: Visual semantic navigation using scene priors. arXiv preprint arXiv:1810.06543 (2018)

  47. Zhu, Y., et al.: Target-driven visual navigation in indoor scenes using deep reinforcement learning. In: International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

Download references

Acknowledgements

We thank Abhishek Kadian, Oleksandr Maksymets, and Manolis Savva for their help with Habitat, and Arun Mallya and Alexander Sax for feedback on the manuscript. The Georgia Tech effort was supported in part by NSF, AFRL, DARPA, ONR YIPs, ARO PECASE, Amazon. Prof. Darrell’s group was supported in part by DoD, NSF, BAIR, and BDD. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Government, or any sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Medhini Narasimhan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (mp4 781 KB)

Supplementary material 3 (mp4 6036 KB)

Supplementary material 4 (mp4 7178 KB)

Supplementary material 1 (pdf 243 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narasimhan, M. et al. (2020). Seeing the Un-Scene: Learning Amodal Semantic Maps for Room Navigation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12363. Springer, Cham. https://doi.org/10.1007/978-3-030-58523-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58523-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58522-8

  • Online ISBN: 978-3-030-58523-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics