Skip to main content

Practical Deep Raw Image Denoising on Mobile Devices

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12351))

Included in the following conference series:

Abstract

Deep learning-based image denoising approaches have been extensively studied in recent years, prevailing in many public benchmark datasets. However, the stat-of-the-art networks are computationally too expensive to be directly applied on mobile devices. In this work, we propose a light-weight, efficient neural network-based raw image denoiser that runs smoothly on mainstream mobile devices, and produces high quality denoising results. Our key insights are twofold: (1) by measuring and estimating sensor noise level, a smaller network trained on synthetic sensor-specific data can out-perform larger ones trained on general data; (2) the large noise level variation under different ISO settings can be removed by a novel k-Sigma Transform, allowing a small network to efficiently handle a wide range of noise levels. We conduct extensive experiments to demonstrate the efficiency and accuracy of our approach. Our proposed mobile-friendly denoising model runs at \(\sim \)70 ms per megapixel on Qualcomm Snapdragon 855 chipset, and it is the basis of the night shot feature of several flagship smartphones released in 2019.

This work is supported by The National Key Research and Development Program of China under Grant 2018YFC0831700.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  2. Aharon, M., Elad, M., Bruckstein, A., et al.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311 (2006)

    Article  Google Scholar 

  3. Anaya, J., Barbu, A.: RENOIR-a dataset for real low-light image noise reduction. J. Vis. Commun. Image Represent. 51, 144–154 (2018)

    Article  Google Scholar 

  4. Anscombe, F.J.: The transformation of Poisson, binomial and negative-binomial data. Biometrika 35(3/4), 246–254 (1948)

    Article  MathSciNet  Google Scholar 

  5. Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D., Barron, J.T.: Unprocessing images for learned raw denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11036–11045 (2019)

    Google Scholar 

  6. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  7. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: can plain neural networks compete with BM3D? In: CVPR (2012)

    Google Scholar 

  8. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  9. Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: CVPR (2018)

    Google Scholar 

  10. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  11. Chollet, F.: Xception: deep learning with depthwise separable convolutions, October 2016. http://arxiv.org/abs/1610.02357

  12. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image restoration by sparse 3D transform-domain collaborative filtering. In: Image Processing: Algorithms and Systems VI, vol. 6812, p. 681207. International Society for Optics and Photonics (2008)

    Google Scholar 

  13. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  14. European Machine Vision Association.: Standard for Characterization of Image Sensors and Cameras (2010). https://doi.org/10.1063/1.1518010

  15. Foi, A., Alenius, S., Katkovnik, V., Egiazarian, K.: Noise measurement for raw-data of digital imaging sensors by automatic segmentation of nonuniform targets. IEEE Sens. J. 7(10), 1456–1461 (2007)

    Article  Google Scholar 

  16. Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754 (2008)

    Article  MathSciNet  Google Scholar 

  17. Gharbi, M., Chaurasia, G., Paris, S., Durand, F.: Deep joint demosaicking and denoising. ACM Trans. Graph. (TOG) 35(6), 191 (2016)

    Article  Google Scholar 

  18. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: CVPR (2014)

    Google Scholar 

  19. Hasinoff, S.W., et al.: Burst photography for high dynamic range and low-light imaging on mobile cameras. ACM Trans. Graph. 35(6), 1–12 (2016). https://doi.org/10.1145/2980179.2980254. http://dl.acm.org/citation.cfm?doid=2980179.2980254

    Article  Google Scholar 

  20. Hirakawa, K., Parks, T.W.: Joint demosaicing and denoising. IEEE Trans. Image Process. 15(8), 2146–2157 (2006)

    Article  Google Scholar 

  21. Jain, V., Seung, S.: Natural image denoising with convolutional networks. In: Advances in neural information processing systems, pp. 769–776 (2009)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  24. Liba, O., et al.: Handheld mobile photography in very low light. ACM Trans. Graph. 38(6) (2019). https://doi.org/10.1145/3355089.3356508

  25. Liu, C., Szeliski, R., Kang, S.B., Zitnick, C.L., Freeman, W.T.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–314 (2008)

    Article  Google Scholar 

  26. Liu, J., et al.: Learning raw image denoising with Bayer pattern unification and Bayer preserving augmentation, April 2019. http://arxiv.org/abs/1904.12945

  27. Liu, X., Tanaka, M., Okutomi, M.: Practical signal-dependent noise parameter estimation from a single noisy image. IEEE Trans. Image Process. 23(10), 4361–4371 (2014)

    Article  MathSciNet  Google Scholar 

  28. Mairal, J., Bach, F.R., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV, vol. 29, pp. 54–62. Citeseer (2009)

    Google Scholar 

  29. Makitalo, M., Foi, A.: Optimal inversion of the Anscombe transformation in low-count Poisson image denoising. IEEE Trans. Image Process. 20(1), 99–109 (2010)

    Article  MathSciNet  Google Scholar 

  30. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: NeurIPS (2016)

    Google Scholar 

  31. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks, December 2017. https://arxiv.org/abs/1712.02327

  32. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  34. Shi, G., Zifei, Y., Kai, Z., Wangmeng, Z., Lei, Z.: Toward convolutional blind denoising of real photographs. arXiv preprint arXiv:1807.04686 (2018)

  35. Smith, L.N.: Cyclical learning rates for training neural networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 464–472. IEEE (2017)

    Google Scholar 

  36. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 4539–4547 (2017)

    Google Scholar 

  37. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9446–9454 (2018)

    Google Scholar 

  38. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

    Google Scholar 

  39. Xu, J., Zhang, L., Zhang, D., Feng, X.: Multi-channel weighted nuclear norm minimization for real color image denoising. In: ICCV (2017)

    Google Scholar 

  40. Yair, N., Michaeli, T.: Multi-scale weighted nuclear norm image restoration. In: CVPR (2018)

    Google Scholar 

  41. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  42. Zhou, Y., et al.: When AWGN-based denoiser meets real noises. arXiv preprint arXiv:1904.03485 (2019)

  43. Zhou, Y., Liu, D., Huang, T.: Survey of face detection on low-quality images. In: 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), pp. 769–773. IEEE (2018)

    Google Scholar 

  44. Zhu, F., Chen, G., Heng, P.A.: From noise modeling to blind image denoising. In: CVPR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 20276 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Huang, H., Xu, Q., Liu, J., Liu, Y., Wang, J. (2020). Practical Deep Raw Image Denoising on Mobile Devices. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12351. Springer, Cham. https://doi.org/10.1007/978-3-030-58539-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58539-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58538-9

  • Online ISBN: 978-3-030-58539-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics